Crates.io | csgrs |
lib.rs | csgrs |
version | 0.20.1 |
created_at | 2025-01-20 20:30:59.675016+00 |
updated_at | 2025-07-24 07:33:55.594395+00 |
description | Constructive solid geometry (CSG) on meshes using BSP trees in Rust |
homepage | |
repository | https://github.com/timschmidt/csgrs |
max_upload_size | |
id | 1524257 |
size | 3,699,904 |
A fast, optionally multithreaded Constructive Solid Geometry (CSG)
library in Rust, built around Boolean operations (union, difference,
intersection, xor) on several different internal geometry representations.
csgrs provides data structures and methods for constructing 2D and 3D geometry
with an OpenSCAD-like syntax. Our aim is for csgrs
to be light weight and full featured through integration with the
Dimforge ecosystem
(e.g., nalgebra
,
Parry
,
and Rapier
) and
geo
for robust processing of
Simple Features.
csgrs has a number of functions useful for generating CNC toolpaths. The
library can be built for 32bit or 64bit floats, and for WASM. Dependencies are
100% rust and nearly all optional.
Earcut and constrained delaunay algorithms used for triangulation only work in 2D, so csgrs rotates 3D polygons into 2D for triangulation then back to 3D.
Install the Rust language tools from rustup.rs.
cargo new my_cad_project
cd my_cad_project
cargo add csgrs
// Alias the library’s generic Mesh type with empty metadata:
type Mesh = csgrs::mesh::Mesh<()>;
// Create two shapes:
let cube = Mesh::cube(2.0, None); // 2×2×2 cube at origin, no metadata
let sphere = Mesh::sphere(1.0, 16, 8, None); // sphere of radius=1 at origin, no metadata
// Difference one from the other:
let difference_result = cube.difference(&sphere);
// Write the result as an ASCII STL:
let stl = difference_result.to_stl_ascii("cube_minus_sphere");
std::fs::write("cube_sphere_difference.stl", stl).unwrap();
cargo build --features="wasm" --target=wasm32-unknown-unknown --release
Sketch<S>
is the type which stores and manipulates 2D polygonal geometry. It contains:
geo
GeometryCollection<Real>
Option<S>
) also defined by youSketch<S>
provides methods for working with 2D shapes made of points and lines.
You can build a Sketch<S>
geo Geometries with Sketch::from_geo(...)
.
Geometries can be open or closed, have holes, but must be planar in the XY.
Sketch
's are triangulated when exported as an STL, or when a Geometry is
converted into a Mesh<S>
.
Sketch::square(width: Real, metadata: Option<S>)
Sketch::rectangle(width: Real, length: Real, metadata: Option<S>)
Sketch::circle(radius: Real, segments: usize, metadata: Option<S>)
Sketch::polygon(&[[x1,y1],[x2,y2],...], metadata: Option<S>)
Sketch::rounded_rectangle(width: Real, height: Real, corner_radius: Real, corner_segments: usize, metadata: Option<S>)
Sketch::ellipse(width: Real, height: Real, segments: usize, metadata: Option<S>)
Sketch::regular_ngon(sides: usize, radius: Real, metadata: Option<S>)
Sketch::right_triangle(width: Real, height: Real, metadata: Option<S>)
Sketch::trapezoid(top_width: Real, bottom_width: Real, height: Real, top_offset: Real, metadata: Option<S>)
Sketch::star(num_points: usize, outer_radius: Real, inner_radius: Real, metadata: Option<S>)
Sketch::teardrop(width: Real, height: Real, segments: usize, metadata: Option<S>)
Sketch::egg(width: Real, length: Real, segments: usize, metadata: Option<S>)
Sketch::squircle(width: Real, height: Real, segments: usize, metadata: Option<S>)
Sketch::keyhole(circle_radius: Real, handle_width: Real, handle_height: Real, segments: usize, metadata: Option<S>)
Sketch::reuleaux(sides: usize, radius: Real, arc_segments_per_side: usize, metadata: Option<S>)
Sketch::ring(id: Real, thickness: Real, segments: usize, metadata: Option<S>)
Sketch::pie_slice(radius: Real, start_angle_deg: Real, end_angle_deg: Real, segments: usize, metadata: Option<S>)
Sketch::supershape(a: Real, b: Real, m: Real, n1: Real, n2: Real, n3: Real, segments: usize, metadata: Option<S>)
Sketch::circle_with_keyway(radius: Real, segments: usize, key_width: Real, key_depth: Real, metadata: Option<S>)
Sketch::circle_with_flat(radius: Real, segments: usize, flat_dist: Real, metadata: Option<S>)
Sketch::circle_with_two_flats(radius: Real, segments: usize, flat_dist: Real, metadata: Option<S>)
Sketch::from_image(img: &GrayImage, threshold: u8, closepaths: bool, metadata: Option<S>)
- Builds a new CSG from the “on” pixels of a grayscale imageSketch::text(text: &str, font_data: &[u8], size: Real, metadata: Option<S>)
- generate 2D text geometry in the XY plane from TTF fontsSketch::metaballs(balls: &[(nalgebra::Point2<Real>, Real)], resolution: (usize, usize), iso_value: Real, padding: Real, metadata: Option<S>)
Sketch::airfoil_naca4(max_camber: Real, camber_position: Real, thickness: Real, chord: Real, samples: usize, metadata: Option<S>)
- NACA 4 digit airfoilSketch::bezier(control: &[[Real; 2]], segments: usize, metadata: Option<S>)
Sketch::bspline(control: &[[Real; 2]], p: usize, segments_per_span: usize, metadata: Option<S>)
Sketch::heart(width: Real, height: Real, segments: usize, metadata: Option<S>)
Sketch::crescent(outer_r: Real, inner_r: Real, offset: Real, segments: usize, metadata: Option<S>)
-Sketch::involute_gear(module_: Real, teeth: usize, pressure_angle_deg: Real, clearance: Real, backlash: Real, segments_per_flank: usize, metadata: Option<S>)
- under constructionSketch::cycloidal_gear(module_: Real, teeth: usize, pin_teeth: usize, clearance: Real, segments_per_flank: usize, metadata: Option<S>)
- under constructionSketch::involute_rack(module_: Real, num_teeth: usize, pressure_angle_deg: Real, clearance: Real, backlash: Real, metadata: Option<S>)
- under constructionSketch::cycloidal_rack(module_: Real, num_teeth: usize, generating_radius: Real, clearance: Real, segments_per_flank: usize, metadata: Option<S>)
- under construction// Alias the library’s generic Sketch type with empty metadata:
type Sketch = csgrs::sketch::Sketch<()>;
let square = Sketch::square(1.0, None); // 1×1 at origin
let rect = Sketch::rectangle(2.0, 4.0, None);
let circle = Sketch::circle(1.0, 32, None); // radius=1, 32 segments
let circle2 = Sketch::circle(2.0, 64, None);
let font_data = include_bytes!("../fonts/MyFont.ttf");
let sketch_text = Sketch::text("Hello!", font_data, 20.0, None);
// Then extrude the text to make it 3D:
let text_3d = sketch_text.extrude(1.0);
Extrusions build 3D polygons from 2D Geometries.
Sketch::extrude(height: Real)
- Simple extrude in Z+Sketch::extrude_vector(direction: Vector3)
- Extrude along Vector3 directionSketch::revolve(angle_degs, segments)
- Extrude while rotating around the Y axisSketch::loft(&bottom_polygon, &top_polygon, false)
- Helper function which extrudes between two Mesh Polygons, optionally with capsSketch::sweep(path: &[Point3<Real>])
- Sweep a Sketch along a path defined by a series of Pointslet square = Sketch::square(2.0, None);
let prism = square.extrude(5.0);
let revolve_shape = square.revolve(360.0, 16);
let bottom = Sketch::circle(2.0, 64, None);
let top = bottom.translate(0.0, 0.0, 5.0);
let lofted = Sketch::loft(&bottom.polygons[0], &top.polygons[0], false);
Sketch::offset(distance)
- outward (or inward) offset in 2D using geo-offset
.Sketch::offset_rounded(distance)
- outward (or inward) offset in 2D using geo-offset
.Sketch::straight_skeleton(&self, orientation: bool)
- returns a Sketch containing the inside (orientation: true) or outside (orientation: false) straight skeletonSketch::bounding_box()
- computes the bounding box of the shape.Sketch::invalidate_bounding_box()
- invalidates the bounding box of the shape, causing it to be recomputed on next accessMesh<S>
is the type which stores and manipulates 3D polygonal geometry. It contains:
Vec<Polygon<S>>
polygons, describing 3D shapes, each Polygon<S>
holds:
Vec<Vertex>
(positions + normals),Plane
describing the polygon’s orientation in 3D.Option<S>
) defined by youOption<S>
) also defined by youMesh<S>
provides methods for working with 3D shapes. You can build a
Mesh<S>
from polygons with Mesh::from_polygons(...)
.
Polygons must be closed, planar, have 3 or more vertices.
Polygons are triangulated when being exported as an STL.
Mesh::cube(width: Real, metadata: Option<S>)
Mesh::cuboid(width: Real, length: Real, height: Real, metadata: Option<S>)
Mesh::sphere(radius: Real, segments: usize, stacks: usize, metadata: Option<S>)
Mesh::cylinder(radius: Real, height: Real, segments: usize, metadata: Option<S>)
Mesh::frustum(radius1: Real, radius2: Real, height: Real, segments: usize, metadata: Option<S>)
-
Construct a frustum at origin with height and radius1
and radius2
.
If either radius is within EPSILON of 0.0, a cone terminating at a point is constructed.Mesh::frustum_ptp(start: Point3, end: Point3, radius1: Real, radius2: Real, segments: usize, metadata: Option<S>)
-
Construct a frustum from start
to end
with radius1
and radius2
.
If either radius is within EPSILON of 0.0, a cone terminating at a point is constructed.Mesh::polyhedron(points: &[[Real; 3]], faces: &[Vec<usize>], metadata: Option<S>)
Mesh::octahedron(radius: Real, metadata: Option<S>)
-Mesh::icosahedron(radius: Real, metadata: Option<S>)
-Mesh::torus(major_r: Real, minor_r: Real, segments_major: usize, segments_minor: usize, metadata: Option<S>)
-Mesh::egg(width: Real, length: Real, revolve_segments: usize, outline_segments: usize, metadata: Option<S>)
Mesh::teardrop(width: Real, height: Real, revolve_segments: usize, shape_segments: usize, metadata: Option<S>)
Mesh::teardrop_cylinder(width: Real, length: Real, height: Real, shape_segments: usize, metadata: Option<S>)
Mesh::ellipsoid(rx: Real, ry: Real, rz: Real, segments: usize, stacks: usize, metadata: Option<S>)
Mesh::metaballs(balls: &[MetaBall], resolution: (usize, usize, usize), iso_value: Real, padding: Real, metadata: Option<S>)
Mesh::sdf<F>(sdf: F, resolution: (usize, usize, usize), min_pt: Point3, max_pt: Point3, iso_value: Real, metadata: Option<S>)
- Return a CSG created by meshing a signed distance field within a bounding boxMesh::arrow(start: Point3, direction: Vector3, segments: usize, orientation: bool, metadata: Option<S>)
- Create an arrow at start, pointing along directionMesh::gyroid(resolution: usize, period: Real, iso_value: Real, metadata: Option<S>)
- Generate a Triply Periodic Minimal Surface (Gyroid) inside the volume of self
Mesh::schwarz_p(resolution: usize, period: Real, iso_value: Real, metadata: Option<S>)
- Generate a Triply Periodic Minimal Surface (Schwarz P) inside the volume of self
Mesh::schwarz_d(resolution: usize, period: Real, iso_value: Real, metadata: Option<S>)
- Generate a Triply Periodic Minimal Surface (Schwarz D) inside the volume of self
Mesh::helical_involute_gear(module_: Real, teeth: usize, pressure_angle_deg: Real, clearance: Real, backlash: Real, segments_per_flank: usize, thickness: Real, helix_angle_deg: Real, slices: usize, metadata: Option<S>)
- under construction// Unit cube at origin, no metadata
let cube = Mesh::cube(1.0, None);
// Sphere of radius=2 at origin with 32 segments and 16 stacks
let sphere = Mesh::sphere(2.0, 32, 16, None);
// Cylinder from radius=1, height=2, 16 segments, and no metadata
let cyl = Mesh::cylinder(1.0, 2.0, 16, None);
// Create a custom polyhedron from points and face indices:
let points = &[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.5, 0.5, 1.0],
];
let faces = vec![
vec![0, 1, 2, 3], // base rectangle
vec![0, 1, 4], // triangular side
vec![1, 2, 4],
vec![2, 3, 4],
vec![3, 0, 4],
];
let pyramid = Mesh::polyhedron(points, &faces, None);
// Metaballs https://en.wikipedia.org/wiki/Metaballs
use csgrs::mesh::metaballs::MetaBall;
let balls = vec![
MetaBall::new(Point3::origin(), 1.0),
MetaBall::new(Point3::new(1.5, 0.0, 0.0), 1.0),
];
let resolution = (60, 60, 60);
let iso_value = 1.0;
let padding = 1.0;
let metaball_csg = CSG::from_metaballs(
&balls,
resolution,
iso_value,
padding,
None,
);
// Example Signed Distance Field for a sphere of radius 1.5 centered at (0,0,0)
let my_sdf = |p: &Point3<Real>| p.coords.norm() - 1.5;
let resolution = (60, 60, 60);
let min_pt = Point3::new(-2.0, -2.0, -2.0);
let max_pt = Point3::new( 2.0, 2.0, 2.0);
let iso_value = 0.0; // Typically zero for SDF-based surfaces
let csg_shape = Mesh::from_sdf(my_sdf, resolution, min_pt, max_pt, iso_value, None);
use csgrs::traits::CSG;
let union_result = cube.union(&sphere);
let difference_result = cube.difference(&sphere);
let intersection_result = cylinder.intersection(&sphere);
Booleans on any type implementing the CSG trait such as Mesh<S>
or Sketch<S>
return their own type.
Types implementing the CSG trait also provide the following transformation functions:
::translate(x: Real, y: Real, z: Real)
- Returns the CSG translated by x, y, and z::translate_vector(vector: Vector3)
- Returns the CSG translated by vector::rotate(x_deg, y_deg, z_deg)
- Returns the CSG rotated in x, y, and z::scale(scale_x, scale_y, scale_z)
- Returns the CSG scaled in x, y, and z::mirror(plane: Plane)
- Returns the CSG mirrored across plane::center()
- Returns the CSG centered at the origin::float()
- Returns the CSG translated so that its bottommost point(s) sit exactly at z=0::transform(&Matrix4)
- Returns the CSG after applying arbitrary affine transforms::distribute_arc(count: usize, radius: Real, start_angle_deg: Real, end_angle_deg: Real)
::distribute_linear(count: usize, dir: nalgebra::Vector3, spacing: Real)
::distribute_grid(rows: usize, cols: usize, dx: Real, dy: Real)
::inverse()
- flips the inside/outside orientation.use nalgebra::Vector3;
use csgrs::mesh::plane::Plane;
use csgrs::traits::CSG;
let moved = cube.translate(3.0, 0.0, 0.0);
let moved2 = cube.translate_vector(Vector3::new(3.0, 0.0, 0.0));
let rotated = sphere.rotate(0.0, 45.0, 90.0);
let scaled = cylinder.scale(2.0, 1.0, 1.0);
let plane_x = Plane { normal: Vector3::x(), w: 0.0 }; // x=0 plane
let plane_y = Plane { normal: Vector3::y(), w: 0.0 }; // y=0 plane
let plane_z = Plane { normal: Vector3::z(), w: 0.0 }; // z=0 plane
let mirrored = cube.mirror(plane_x);
Mesh::vertices()
- collect all vertices from the Mesh
Mesh::convex_hull()
- uses chull
to generate a 3D convex hull.Mesh::minkowski_sum(&other)
- naive Minkowski sum, then takes the hull.Mesh::ray_intersections(origin, direction)
— returns all intersection points and distances.Mesh::flatten()
- flattens a 3D shape into 2D (on the XY plane), unions the outlines.Mesh::slice(plane)
- slices the CSG by a plane and returns the cross-section polygons.Mesh::subdivide_triangles(subdivisions)
- subdivides each polygon’s triangles, increasing mesh density.Mesh::renormalize()
- re-computes each polygon’s plane from its vertices, resetting all normals.Mesh::bounding_box()
- computes the bounding box of the shape.Mesh::invalidate_bounding_box()
- invalidates the bounding box of the shape, causing it to be recomputed on next accessMesh::triangulate()
- triangulates all polygons returning a CSG containing triangles.Mesh::from_polygons(polygons: &[Polygon<S>])
- create a new CSG from Polygons.csg.to_stl_ascii("solid_name") -> String
csg.to_stl_binary("solid_name") -> io::Result<Vec<u8>>
Mesh::from_stl(&stl_data) -> io::Result<CSG<S>>
// Save to ASCII STL
let stl_text = csg_union.to_stl_ascii("union_solid");
std::fs::write("union_ascii.stl", stl_text).unwrap();
// Save to binary STL
let stl_bytes = csg_union.to_stl_binary("union_solid").unwrap();
std::fs::write("union_bin.stl", stl_bytes).unwrap();
// Load from an STL file on disk
let file_data = std::fs::read("some_file.stl")?;
let imported_mesh = Mesh::from_stl(&file_data)?;
csg.to_dxf() -> Result<Vec<u8>, Box<dyn Error>>
Mesh::from_dxf(&dxf_data) -> Result<CSG<S>, Box<dyn Error>>
// Export DXF
let dxf_bytes = csg_obj.to_dxf()?;
std::fs::write("output.dxf", dxf_bytes)?;
// Import DXF
let dxf_data = std::fs::read("some_file.dxf")?;
let csg_dxf = CSG::from_dxf(&dxf_data)?;
Hershey fonts are single stroke fonts which produce open ended polylines in the XY plane via hershey
:
let font_data = include_bytes("../fonts/myfont.jhf");
let csg_text = Sketch::from_hershey("Hello!", font_data, 20.0, None);
Mesh
csg.to_bevy_mesh()
returns a Bevy Mesh
.
use bevy::{prelude::*, render::render_asset::RenderAssetUsages, render::mesh::{Indices, PrimitiveTopology}};
let bevy_mesh = mesh_obj.to_bevy_mesh();
TriMesh
csg.to_trimesh()
returns a SharedShape
containing a TriMesh<Real>
.
use csgrs::float_types::rapier3d::prelude::*; // re-exported for f32/f64 support
let trimesh_shape = mesh_obj.to_trimesh(); // SharedShape with a TriMesh
csg.to_rigid_body(rb_set, co_set, translation, rotation, density)
helps build and insert both a rigid body and a collider:
use nalgebra::Vector3;
use csgrs::float_types::rapier3d::prelude::*; // re-exported for f32/f64 support
use csgrs::float_types::FRAC_PI_2;
use csgrs::traits::CSG;
use csgrs::mesh::Mesh;
let mut rb_set = RigidBodySet::new();
let mut co_set = ColliderSet::new();
let axis_angle = Vector3::z() * FRAC_PI_2; // 90° around Z
let rb_handle = mesh_obj.to_rigid_body(
&mut rb_set,
&mut co_set,
Vector3::new(0.0, 0.0, 0.0), // translation
axis_angle, // axis-angle
1.0, // density
);
let density = 1.0;
let (mass, com, inertia_frame) = mesh_obj.mass_properties(density);
println!("Mass: {}", mass);
println!("Center of Mass: {:?}", com);
println!("Inertia local frame: {:?}", inertia_frame);
mesh.is_manifold()
triangulates the CSG, builds a HashMap of all edges (pairs of vertices), and checks that each is used exactly twice. Returns true
if manifold, false
if not.
if (mesh_obj.is_manifold()){
println!("Mesh is manifold!");
} else {
println!("Not manifold.");
}
Mesh<S>
and Sketch<S>
are generic over S: Clone
. Each polygon in a Mesh<S>
and each Mesh<S>
and Sketch<S>
have an optional metadata: Option<S>
.
Use cases include storing color, ID, or layer info.
use csgrs::polygon::Polygon;
use csgrs::vertex::Vertex;
use nalgebra::{Point3, Vector3};
#[derive(Clone)]
struct MyMetadata {
color: (u8, u8, u8),
label: String,
}
type Mesh = csgrs::mesh::Mesh<MyMetadata>;
// For a single polygon:
let mut poly = Polygon::new(
vec![
Vertex::new(Point3::origin(), Vector3::z()),
Vertex::new(Point3::new(1.0, 0.0, 0.0), Vector3::z()),
Vertex::new(Point3::new(0.0, 1.0, 0.0), Vector3::z()),
],
Some(MyMetadata {
color: (255, 0, 0),
label: "Triangle".into(),
}),
);
// Retrieve metadata
if let Some(data) = poly.metadata() {
println!("This polygon is labeled {}", data.label);
}
// Mutate metadata
if let Some(data_mut) = poly.metadata_mut() {
data_mut.label.push_str("_extended");
}
A cargo xtask is included in the repository for testing building with various combinations of feature flags. To use it, you must install cargo xtask:
cargo install xtask
To run the tests:
cargo xtask test-all
Patterns we work to follow throughout the library to improve performance and memory usage:
Shape Interrogation for Computer Aided Design and Manufacturing
MIT License
Copyright (c) 2025 Timothy Schmidt
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This library initially based on a translation of CSG.js © 2011 Evan Wallace, under the MIT license.
If you find issues, please file an issue or submit a pull request. Feedback and contributions are welcome!
Have fun building geometry in Rust!