| Crates.io | diffusionx |
| lib.rs | diffusionx |
| version | 0.11.1 |
| created_at | 2025-02-19 04:02:51.931182+00 |
| updated_at | 2025-12-18 00:26:04.354363+00 |
| description | A multi-threaded crate for random number generation and stochastic process simulation, with optional GPU acceleration. |
| homepage | |
| repository | https://github.com/tangxiangong/diffusionx |
| max_upload_size | |
| id | 1560919 |
| size | 647,435 |
A multi-threaded high-performance Rust library for random number generation and stochastic process simulation, with optional GPU acceleration.
English | 简体中文
[!NOTE] DiffusionX uses the high-quality Xoshiro256++ random number generator as the common entropy source across all distributions.
The acceleration includes moment calculation and random number generation.
use diffusionx::random::{normal, uniform, stable};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Generate a normal random number with mean 0.0 and std 1.0
let normal_sample = normal::rand(0.0, 1.0)?;
// Generate 1000 standard normal random numbers
let std_normal_samples = normal::standard_rands::<f64>(1000);
// Generate a uniform random number in range [0, 10)
let uniform_sample = uniform::range_rand(0..10)?;
// Generate 1000 uniform random numbers in range [0, 1)
let std_uniform_samples = uniform::standard_rands(1000);
// Generate 1000 standard stable random numbers
let stable_samples = stable::standard_rands(1.5, 0.5, 1000)?;
Ok(())
}
use diffusionx::simulation::{prelude::*, continuous::Bm};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create standard Brownian motion object
let bm = Bm::default();
// Create trajectory with duration 1.0
let traj = bm.duration(1.0)?;
// Simulate Brownian motion trajectory with time step 0.01
let (times, positions) = traj.simulate(0.01)?;
println!("times: {:?}", times);
println!("positions: {:?}", positions);
// Calculate first-order raw moment with 1000 particles and time step 0.01
let mean = traj.raw_moment(1, 1000, 0.01)?;
println!("mean: {mean}");
// Calculate second-order central moment with 1000 particles and time step 0.01
let msd = traj.central_moment(2, 1000, 0.01)?;
println!("MSD: {msd}");
// Calculate EATAMSD with duration 100.0, delta 1.0, 10000 particles, time step 0.1,
// and Gauss-Legendre quadrature order 10
let eatamsd = bm.eatamsd(100.0, 1.0, 10000, 0.1, 10)?;
println!("EATAMSD: {eatamsd}");
// Calculate first passage time of Brownian motion with boundaries at -1.0 and 1.0
let fpt = bm.fpt((-1.0, 1.0), 1000, 0.01)?;
println!("fpt: {fpt}");
Ok(())
}
[!NOTE] The visualization requires the
visualizefeature to be enabled.# In your Cargo.toml [dependencies] diffusionx = { version = "*", features = ["visualize"] }
use diffusionx::{
simulation::{continuous::Bm, prelude::*},
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create Brownian motion trajectory
let bm = Bm::default();
let traj = bm.duration(10.0)?;
// Configure and create visualization
let config = PlotConfigBuilder::default()
.time_step(0.01)
.output_path("brownian_motion.png")
.caption("Brownian Motion Trajectory")
.x_label("t")
.y_label("B")
.legend("bm")
.size((800, 600))
.backend(PlotterBackend::BitMap)
.build()?;
// Generate plot
traj.plot(&config)?;
Ok(())
}
[!NOTE] This requires the
metalorcudafeature to be enabled.# In your Cargo.toml [dependencies] diffusionx = { version = "*", features = ["cuda"] }
use diffusionx::{
simulation::continuous::Bm,
gpu::GPUMoment,
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let bm = Bm::<f32>::default();
// GPU-accelerated moment calculations
let mean = bm.mean_gpu(1.0, 100_000, 0.01)?;
let msd = bm.msd_gpu(1.0, 100_000, 0.01)?;
let raw_moment = bm.raw_moment_gpu(1.0, 2, 100_000, 0.01)?;
let central_moment = bm.central_moment_gpu(1.0, 2, 100_000, 0.01)?;
// Fractional moments are also supported
let frac_raw = bm.frac_raw_moment_gpu(1.0, 1.5, 100_000, 0.01)?;
let frac_central = bm.frac_central_moment_gpu(1.0, 1.5, 100_000, 0.01)?;
println!("Mean: {mean}, MSD: {msd}");
Ok(())
}
DiffusionX is designed with a trait-based system for high extensibility and performance:
ContinuousProcess: Base trait for continuous stochastic processesPointProcess: Base trait for point processesDiscreteProcess: Base trait for discrete stochastic processesMoment: Trait for statistical moments calculation, including (fractional) raw and central momentsVisualize: Trait for plotting process trajectoriesGPUMoment: Trait for simulating the (fractional) moments in CUDA.The GPUMoment trait provides GPU-accelerated statistical moment calculations. It is implemented for:
Bm<T> - Brownian MotionOrnsteinUhlenbeck<T> - Ornstein-Uhlenbeck ProcessLevy<T> - Lévy Process| Method | Description |
|---|---|
mean_gpu(duration, particles, time_step) |
Calculate mean (first raw moment) |
msd_gpu(duration, particles, time_step) |
Calculate mean squared displacement (second central moment) |
raw_moment_gpu(duration, order, particles, time_step) |
Calculate raw moment of integer order |
central_moment_gpu(duration, order, particles, time_step) |
Calculate central moment of integer order |
frac_raw_moment_gpu(duration, order, particles, time_step) |
Calculate raw moment of fractional order |
frac_central_moment_gpu(duration, order, particles, time_step) |
Calculate central moment of fractional order |
Adding a New Continuous Process:
#[derive(Debug, Clone)]
struct MyProcess {
// Your parameters
// Should be `Send + Sync` for parallel computation
// and `Clone`
}
impl ContinuousProcess for MyProcess {
fn start(&self) -> f64 {
0.0 // or any default value
}
fn simulate(
&self,
duration: f64,
time_step: f64
) -> XResult<(Vec<f64>, Vec<f64>)> {
// Implement your simulation logic
todo!()
}
}
Implementing ContinuousProcess trait automatically provides
meanmsdraw_moment (frac_raw_moment)central_moment (frac_central_moment)fptoccupation_timetamsdplotThe full example implementing the CIR process is here.
Performance benchmark tests compare the Rust, C++, Julia, and Python implementations, which can be found here.
Licensed under either of:
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
Dedicated to my brief yet unforgettable years in LZU and to XX.