| Crates.io | diffusionx |
| lib.rs | diffusionx |
| version | 0.4.8 |
| created_at | 2025-02-19 04:02:51.931182+00 |
| updated_at | 2025-07-05 10:56:32.555356+00 |
| description | A multi-threaded crate for random number generation and stochastic process simulation. |
| homepage | |
| repository | https://github.com/tangxiangong/diffusionx |
| max_upload_size | |
| id | 1560919 |
| size | 483,031 |
A multi-threaded high-performance Rust library for random number generation and stochastic process simulation.
English | 简体中文
Brownian motion
$\alpha$-stable Lévy process
Cauchy process
$\alpha$-stable subordinator
Inverse $\alpha$-stable subordinator
Poisson process
Fractional Brownian motion
Continuous-time random walk
Ornstein-Uhlenbeck process
Langevin equation
Generalized Langevin equation
Subordinated Langevin equation
Lévy walk
Birth-death process
Random walk
Brownian excursion
Brownian meander
Gamma process
Geometric Brownian motion
Brownian yet non-Gaussian process
use diffusionx::random::{normal, uniform, stable};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Generate a normal random number with mean 0.0 and std 1.0
let normal_sample = normal::rand(0.0, 1.0)?;
// Generate 1000 standard normal random numbers
let std_normal_samples = normal::standard_rands::<f64>(1000);
// Generate a uniform random number in range [0, 10)
let uniform_sample = uniform::range_rand(0..10)?;
// Generate 1000 uniform random numbers in range [0, 1)
let std_uniform_samples = uniform::standard_rands(1000);
// Generate 1000 standard stable random numbers
let stable_samples = stable::standard_rands(1.5, 0.5, 1000)?;
Ok(())
}
use diffusionx::simulation::{prelude::*, continuous::Bm};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create standard Brownian motion object
let bm = Bm::default();
// Create trajectory with duration 1.0
let traj = bm.duration(1.0)?;
// Simulate Brownian motion trajectory with time step 0.01
let (times, positions) = traj.simulate(0.01)?;
println!("times: {:?}", times);
println!("positions: {:?}", positions);
// Calculate first-order raw moment with 1000 particles and time step 0.01
let mean = traj.raw_moment(1, 1000, 0.01)?;
println!("mean: {mean}");
// Calculate second-order central moment with 1000 particles and time step 0.01
let msd = traj.central_moment(2, 1000, 0.01)?;
println!("MSD: {msd}");
// Calculate EATAMSD with duration 100.0, delta 1.0, 10000 particles, time step 0.1,
// and Gauss-Legendre quadrature order 10
let eatamsd = bm.eatamsd(100.0, 1.0, 10000, 0.1, 10)?;
println!("EATAMSD: {eatamsd}");
// Calculate first passage time of Brownian motion with boundaries at -1.0 and 1.0
let fpt = bm.fpt((-1.0, 1.0), 1000, 0.01)?;
println!("fpt: {fpt}");
Ok(())
}
use diffusionx::{
simulation::{continuous::Bm, prelude::*},
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create Brownian motion trajectory
let bm = Bm::default();
let traj = bm.duration(10.0)?;
// Configure and create visualization
let config = PlotConfigBuilder::default()
.time_step(0.01)
.output_path("brownian_motion.png")
.caption("Brownian Motion Trajectory")
.x_label("t")
.y_label("B")
.legend("bm")
.size((800, 600))
.backend(PlotterBackend::BitMap)
.build()?;
// Generate plot
traj.plot(&config)?;
Ok(())
}
DiffusionX is designed with a trait-based system for high extensibility and performance:
ContinuousProcess: Base trait for continuous stochastic processesPointProcess: Base trait for point processesDiscreteProcess: Base trait for discrete stochastic processesMoment: Trait for statistical moments calculation, including raw and central momentsVisualize: Trait for plotting process trajectoriesAdding a New Continuous Process:
#[derive(Debug, Clone)]
struct MyProcess {
// Your parameters
// Should be `Send + Sync` for parallel computation
// and `Clone`
}
impl ContinuousProcess for MyProcess {
fn simulate(
&self,
duration: f64,
time_step: f64
) -> XResult<(Vec<f64>, Vec<f64>)> {
// Implement your simulation logic
todo!()
}
}
Implementing ContinuousProcess trait automatically provides
meanmsdraw_momentcentral_momentfptoccupation_timetamsdplotExample:
use diffusionx::{
XError, XResult,
random::normal,
simulation::prelude::*,
utils::{diff, linspace, write_csv},
};
/// CIR
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone)]
struct CIR {
speed: f64,
mean: f64,
volatility: f64,
start_position: f64,
}
impl CIR {
fn new(
speed: impl Into<f64>,
mean: impl Into<f64>,
volatility: impl Into<f64>,
start_position: impl Into<f64>,
) -> XResult<Self> {
let speed: f64 = speed.into();
if speed <= 0.0 {
return Err(XError::InvalidParameters(format!(
"speed must be greater than 0, but got {speed}",
)));
}
Ok(Self {
speed,
mean: mean.into(),
volatility: volatility.into(),
start_position: start_position.into(),
})
}
}
impl ContinuousProcess for CIR {
fn simulate(&self, duration: f64, time_step: f64) -> XResult<Pair> {
let t = linspace(0.0, duration, time_step);
let num_steps = t.len() - 1;
let initial_x = self.start_position.max(0.0);
let noises = normal::standard_rands::<f64>(num_steps);
let delta = diff(&t);
let x = std::iter::once(initial_x)
.chain(
noises
.iter()
.zip(delta)
.scan(initial_x, |state, (&xi, delta_t)| {
let current_x = *state;
let drift = self.speed * (self.mean - current_x);
let diffusion = self.volatility * current_x.sqrt().max(0.0);
let next_x = current_x + drift * delta_t + diffusion * xi * delta_t.sqrt();
*state = next_x.max(0.0);
Some(*state)
}),
)
.collect();
Ok((t, x))
}
}
fn main() -> XResult<()> {
let duration = 10.0;
let particles = 10_000;
let time_step = 0.01;
let cir = CIR::new(1, 1, 1, 0.5)?;
let traj = cir.duration(duration)?;
let (t, x) = cir.simulate(duration, time_step)?;
write_csv("tmp/CIR.csv", &t, &x)?;
// mean
let mean = cir.mean(duration, particles, time_step)?; // or let mean = traj.raw_moment(1, particles, time_step)?;
println!("mean: {mean}");
// msd
let msd = cir.msd(duration, particles, time_step)?; // or let msd = traj.central_moment(2, particles, time_step)?;
println!("MSD: {msd}");
// FPT
let max_duration = 1000.0;
let fpt = cir
.fpt((-1.0, 1.0), max_duration, time_step)?
.unwrap_or(-1.0);
println!("FPT: {fpt}");
// occupation time
let occupation_time = cir.occupation_time((-1.0, 1.0), duration, time_step)?;
println!("Occupation Time: {occupation_time}");
// TAMSD
let slag = 1.0;
let quad_order = 10;
let tamsd = TAMSD::new(&cir, duration, slag)?;
let eatamsd = tamsd.mean(particles, time_step, quad_order)?;
println!("EATAMSD: {eatamsd}");
// Visualization
let config = PlotConfigBuilder::default()
.time_step(time_step)
.output_path("tmp/CIR.svg")
.caption("CIR")
.show_grid(false)
.x_label("t")
.y_label("r")
.legend("CIR")
.backend(PlotterBackend::SVG)
.build()
.unwrap();
traj.plot(&config)?;
Ok(())
}
Result:
mean: 0.9957644815350275
MSD: 0.7441251895881059
FPT: 0.38
Occupation Time: 4.719999999999995
EATAMSD: 0.6085042089895467
Performance benchmarks comparing Rust, C++, Julia, and Python implementations are available here.
Licensed under either of:
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.