Crates.io | dilib |
lib.rs | dilib |
version | 0.2.1 |
source | src |
created_at | 2022-04-03 04:43:44.361207 |
updated_at | 2022-12-19 22:10:31.852207 |
description | A dependency injection library for Rust |
homepage | https://crates.io/crates/dilib/ |
repository | https://github.com/Neo-Ciber94/dilib-rs/ |
max_upload_size | |
id | 561186 |
size | 79,167 |
A dependency injection library for Rust.
[dependencies]
dilib = "0.2.0"
use dilib::Container;
struct Printer;
impl Printer {
pub fn print(&self, s: &str) {
println!("{}", s);
}
}
struct EnglishGreeting;
impl EnglishGreeting {
pub fn greet(&self) -> String {
"Hello!".to_string()
}
}
struct SpanishGreeting;
impl SpanishGreeting {
pub fn greet(&self) -> String {
"Hola!".to_string()
}
}
let mut container = Container::new();
container.add_singleton(Printer).unwrap();
container.add_scoped(|| EnglishGreeting).unwrap();
container.add_scoped_with_name("es", || SpanishGreeting).unwrap();
let printer = container.get::<Printer>().unwrap();
let en = container.get::<EnglishGreeting>().unwrap();
let es = container.get_with_name::<SpanishGreeting>("es").unwrap();
printer.print(&en.greet());
printer.print(&es.greet());
The container is the main storage for the 2 types of provides:
Scoped
: creates a new instance each timeSingleton
: returns the same instance each timeAll these providers can be named using the methods ended with with_name(...)
.
The scoped providers creates a new instance each time they are called.
use dilib::Container;
let mut container = Container::new();
container.add_scoped(|| String::from("Apple Pie")).unwrap();
let s = container.get::<String>().unwrap();
assert_eq!(s.as_ref(), "Apple Pie");
The singleton providers returns the same instance each time they are called.
use dilib::Container;
use std::sync::Mutex;
let mut container = Container::new();
container.add_singleton(Mutex::new(0)).unwrap();
{
let c1 = container.get::<Mutex<i32>>().unwrap();
*c1.lock().unwrap() = 3;
}
let c2 = container.get::<Mutex<i32>>().unwrap();
assert_eq!(*c2.lock().unwrap(), 3);
The Inject
trait is a mechanism to create a type using the
providers of a container.
To add a type that implements Inject
to the container,
you use the add_deps
methods, this adds the type as a Scoped
provider.
use std::sync::{Mutex, atomic::AtomicUsize};
use dilib::{Container, Inject};
struct IdGenerator(AtomicUsize);
impl IdGenerator {
pub fn next(&self) -> usize {
1 + self.0.fetch_add(1, std::sync::atomic::Ordering::SeqCst)
}
}
#[derive(Clone, Debug)]
struct Fruit {
id: usize,
tag: String
}
impl Inject for Fruit {
fn inject(container: &Container) -> Self {
let generator = container.get::<IdGenerator>().unwrap();
let id = generator.next();
let tag = container.get_with_name::<String>("fruit").unwrap().cloned();
Fruit { id, tag }
}
}
let mut container = Container::new();
container.add_singleton(IdGenerator(AtomicUsize::new(0))).unwrap();
container.add_scoped_with_name("fruit", || String::from("b18ap31")).unwrap();
container.add_deps::<Fruit>().unwrap();
let f1 = container.get::<Fruit>().unwrap();
let f2 = container.get::<Fruit>().unwrap();
assert_eq!(f1.id, 1);
assert_eq!(f1.tag, "b18ap31");
assert_eq!(f2.id, 2);
assert_eq!(f2.tag, "b18ap31");
To add a trait to a container you should bind the trait to its implementation using the macros:
add_scoped_trait!(container, name, trait => impl)
add_singleton_trait!(container, name, trait => impl)
add_scoped_trait!(container, name, trait @ Inject)
add_singleton_trait!(container, name, trait @ Inject)
The
name
is optional.
This adds the trait as a Box<dyn Trait>
.
And you can get the values back using:
get_scoped_trait!(container, name, trait)
get_singleton_trait!(container, name, trait)
get_resolved_trait(container, name, trait)
The
name
is also optional.
This returns the trait as a Box<dyn Trait>
.
use dilib::{
Container,
add_scoped_trait,
add_singleton_trait,
get_resolved_trait,
};
trait Discount {
fn get_discount(&self) -> f32;
}
trait Fruit {
fn name(&self) -> &str;
fn price(&self) -> f32;
}
struct TenPercentDiscount;
impl Discount for TenPercentDiscount {
fn get_discount(&self) -> f32 {
0.1
}
}
struct Apple;
struct Orange;
impl Fruit for Apple {
fn name(&self) -> &str {
"Apple"
}
fn price(&self) -> f32 {
2.0
}
}
impl Fruit for Orange {
fn name(&self) -> &str {
"Orange"
}
fn price(&self) -> f32 {
1.7
}
}
let mut container = Container::new();
add_singleton_trait!(container, Discount => TenPercentDiscount).unwrap();
add_scoped_trait!(container, "apple", Fruit => Apple).unwrap();
add_scoped_trait!(container, "orange", Fruit => Orange).unwrap();
// All types are returned as `Box<dyn Trait>`
let discount = get_resolved_trait!(container, Discount).unwrap();
let apple = get_resolved_trait!(container, Fruit, "apple").unwrap();
let orange = get_resolved_trait!(container, Fruit, "orange").unwrap();
assert_eq!(discount.get_discount(), 0.1);
assert_eq!(apple.name(), "Apple");
assert_eq!(apple.price(), 2.0);
assert_eq!(orange.name(), "Orange");
assert_eq!(orange.price(), 1.7);
There are 3 ways to retrieve a value from the container:
get
get_scoped
get_singleton
And it's named variants:
get_with_name
get_scoped_with_name
get_singleton_with_name
get_scoped
and get_singleton
are self-explanatory, they get
a value from a scoped
or singleton
provider.
But get
can get any scoped
and singleton
value,
the difference is that get
returns a Resolved<T>
and the others returns a T
(scoped) or Arc<T>
(singletons).
Resolved<T>
is just an enum for a Scoped(T)
and Singleton(Arc<T>)
where you can convert it back using into_scoped
or into_singleton
,
it also implements Deref
over T
.
This requires the
derive
feature.
Inject is implemented for all types that implement Default
and can be auto-implemented using #[derive]
. When using the derive
types Arc<T>
and Singleton<T>
will be injected as singleton,
and other types as scoped unless specified.
use dilib::{Singleton, Inject, Container};
use dilib_derive::*;
#[derive(Inject)]
struct Apple {
// Singleton is an alias for Arc<T>
#[inject(name="apple")]
tag: Singleton<String>,
#[inject(name="apple_price")]
price: f32
}
let mut container = Container::new();
container.add_singleton_with_name("apple", String::from("FRUIT_APPLE")).unwrap();
container.add_scoped_with_name("apple_price", || 2.0_f32).unwrap();
container.add_deps::<Apple>();
let apple = container.get::<Apple>().unwrap();
assert_eq!(apple.tag.as_ref(), "FRUIT_APPLE");
assert_eq!(apple.price, 2.0);
This requires the
global
feature.
dilib
also offers a global container so you don't require
to declare your own, you can access the values of the container
using get_scoped!
, get_singleton!
or get_resolved!
,
you can also access the container directly using get_container()
.
use dilib::{global::init_container, resolve};
init_container(|container| {
container.add_scoped(|| String::from("Orange")).unwrap();
container.add_singleton_with_name("num", 123_i32).unwrap();
}).expect("unable to initialize the container");
let orange = resolve!(String).unwrap();
let num = resolve!(i32, "num").unwrap();
assert_eq!(orange.as_ref(), "Orange");
assert_eq!(*num, 123);
This requires the
unstable_provide
feature.
The feature unstable_provide
make possible to have dependency
injection more similar to other frameworks like C# EF Core
or Java Spring
.
To allow run code before main we use the the ctor crate, which have been tested in several OS so is stable for most of the use cases.
You can use the #[provide]
macro over any function or type that implements
**Inject
to register it to the global container.
use std::sync::RwLock;
use dilib::global::init_container;
use dilib::{resolve, Singleton, Inject, provide};
#[allow(dead_code)]
#[derive(Debug, Clone)]
struct User {
name: &'static str,
email: &'static str,
}
trait Repository<T> {
fn add(&self, item: T);
fn get_all(&self) -> Vec<T>;
}
#[derive(Default)]
#[provide(scope="singleton")]
struct Db(RwLock<Vec<User>>);
#[derive(Inject)]
#[provide(bind="Repository<User>")]
struct UserRepository(Singleton<Db>);
impl Repository<User> for UserRepository {
fn add(&self, item: User) {
self.0.0.write().unwrap().push(item);
}
fn get_all(&self) -> Vec<User> {
self.0.0.read().unwrap().clone()
}
}
// Initialize the container to register the providers
init_container(|_container| {
// Add additional providers
}).unwrap();
let user_repository = resolve!(trait Repository<User>).unwrap();
user_repository.add(User { name: "Marie", email: "marie@example.com" });
user_repository.add(User { name: "Natasha", email: "natasha@example.com" });
let users = user_repository.get_all();
let db = resolve!(Db).unwrap();
println!("Total users: {}", db.0.read().unwrap().len());
println!("{:#?}", users);