| Crates.io | distances |
| lib.rs | distances |
| version | 1.8.0 |
| created_at | 2020-04-22 14:18:32.415103+00 |
| updated_at | 2024-10-12 16:28:40.623462+00 |
| description | Fast and generic distance functions for high-dimensional data. |
| homepage | |
| repository | |
| max_upload_size | |
| id | 232947 |
| size | 151,164 |
Fast and generic distance functions for high-dimensional data.
Add this to your project:
> cargo add distances@1.8.0
Use it in your project:
use distances::Number;
use distances::vectors::euclidean;
let a = [1.0_f32, 2.0, 3.0];
let b = [4.0_f32, 5.0, 6.0];
let distance: f32 = euclidean(&a, &b);
assert!((distance - (27.0_f32).sqrt()).abs() < 1e-6);
Number trait to abstract over different numeric types.
Number.Numbers.maturin and pyo3.no_std support.euclideansquared_euclideanmanhattanchebyshevminkowski
minkowski_p
pth power.cosinehammingcanberra
bray_curtis
pearson
1.0 - r where r is the Pearson Correlation Coefficientwasserstein
bhattacharyya
hellinger
levenshteinneedleman_wunschsmith_watermanhammingjaccarddicekulsinskihausdorff
tanamotoContributions are welcome, encouraged, and appreciated! See CONTRIBUTING.md.
Licensed under the MIT license.