| Crates.io | dlpark |
| lib.rs | dlpark |
| version | 0.6.0 |
| created_at | 2023-05-09 15:30:17.121815+00 |
| updated_at | 2025-06-04 09:39:46.561247+00 |
| description | dlpack Rust binding for Python |
| homepage | https://crates.io/crates/dlpark |
| repository | https://github.com/SunDoge/dlpark |
| max_upload_size | |
| id | 860638 |
| size | 127,269 |
A pure Rust implementation of dmlc/dlpack.
This implementation focuses on transferring tensor from Rust to Python and vice versa.
DLPack?DLPack is a common in-memory tensor structure that enables sharing tensor data between different deep learning frameworks. It provides a standardized way to exchange tensor data without copying, making it efficient for framework interoperability.
Key features of DLPack:
The library implements both legacy and versioned DLPack structures:
SafeManagedTensor: Legacy implementation without versioningSafeManagedTensorVersioned: Versioned implementation (current standard) with:
The library provides safe Rust abstractions over the C-style DLPack structures:
SafeManagedTensor and SafeManagedTensorVersioned:
DLPack tensorsKey Features:
| Feature | Description | Status |
|---|---|---|
pyo3 |
Enable Python bindings with pyo3 | ✅ |
image |
Enable image support | ✅ |
ndarray |
Enable ndarray support | ✅ |
We provide a simple example of how to transfer image::RgbImage to Python and torch.Tensor to Rust.
use dlpark::prelude::*;
// Rust to Python
#[pyfunction]
fn send() -> SafeManagedTensorVersioned {
let v = vec![1i32, 2, 3];
SafeManagedTensorVersioned::new(v).unwrap()
}
// Python to Rust
#[pyfunction]
fn receive(tensor: SafeManagedTensorVersioned) {
let s: &[i32] = tensor.as_slice_contiguous().unwrap();
// Do your work.
}
use dlpark::prelude::*;
use ndarray::ArrayD;
let arr = ArrayD::from_shape_vec(IxDyn(&[2, 3]), vec![1i32, 2, 3, 4, 5, 6])?;
let tensor = SafeManagedTensorVersioned::new(arr)?;
let view = ArrayViewD::<i32>::try_from(&tensor)?;
use dlpark::prelude::*;
use image::{ImageBuffer, Rgb};
let img = ImageBuffer::<Rgb<u8>, _>::from_vec(100, 100, vec![0; 100 * 100 * 3])?;
let tensor = SafeManagedTensorVersioned::new(img)?;
let img2 = ImageBuffer::<Rgb<u8>, _>::try_from(&tensor)?;