Crates.io | dlpark |
lib.rs | dlpark |
version | 0.4.1 |
source | src |
created_at | 2023-05-09 15:30:17.121815 |
updated_at | 2024-03-26 09:52:16.855858 |
description | dlpack Rust binding for Python |
homepage | https://crates.io/crates/dlpark |
repository | https://github.com/SunDoge/dlpark |
max_upload_size | |
id | 860638 |
size | 54,284 |
A pure Rust implementation of dmlc/dlpack.
Check example/with_pyo3 for usage.
This implementation focuses on transferring tensor from Rust to Python and vice versa.
It can also be used without pyo3
as a Rust library with default-features = false
, check example/from_numpy.
We provide a simple example of how to transfer image::RgbImage
to Python and torch.Tensor
to Rust.
We have to implement some traits for a struct to be able to converted to PyObject
use std::ffi::c_void;
use dlpark::prelude::*;
struct PyRgbImage(image::RgbImage);
impl ToTensor for PyRgbImage {
fn data_ptr(&self) -> *mut std::ffi::c_void {
self.0.as_ptr() as *const c_void as *mut c_void
}
fn byte_offset(&self) -> u64 {
0
}
fn device(&self) -> Device {
Device::CPU
}
fn dtype(&self) -> DataType {
DataType::U8
}
fn shape_and_strides(&self) -> ShapeAndStrides {
ShapeAndStrides::new_contiguous_with_strides(
&[self.0.height(), self.0.width(), 3].map(|x| x as i64),
)
}
}
Then we can return a ManagerCtx<PyRgbImage>
#[pyfunction]
fn read_image(filename: &str) -> ManagerCtx<PyRgbImage> {
let img = image::open(filename).unwrap();
let rgb_img = img.to_rgb8();
ManagerCtx::new(PyRgbImage(rgb_img))
}
You can acess it in Python
import dlparkimg
from torch.utils.dlpack import to_dlpack, from_dlpack
import matplotlib.pyplot as plt
tensor = from_dlpack(dlparkimg.read_image("candy.jpg"))
print(tensor.shape)
plt.imshow(tensor.numpy())
plt.show()
If you want to convert it to numpy.ndarray
, you can make a simple wrapper like this
import numpy as np
import dlparkimg
class FakeTensor:
def __init__(self, x):
self.x = x
def __dlpack__(self):
return self.x
arr = np.from_dlpack(FakeTensor(dlparkimg.read_image("candy.jpg")))
ManagedTensor
holds the memory of tensor and provide methods to access the tensor's attributes.
#[pyfunction]
fn write_image(filename: &str, tensor: ManagedTensor) {
let buf = tensor.as_slice::<u8>();
let rgb_img = image::ImageBuffer::<Rgb<u8>, _>::from_raw(
tensor.shape()[1] as u32,
tensor.shape()[0] as u32,
buf,
)
.unwrap();
rgb_img.save(filename).unwrap();
}
And you can call it in Python
import dlparkimg
from torch.utils.dlpack import to_dlpack, from_dlpack
bgr_img = tensor[..., [2, 1, 0]] # [H, W, C=3]
dlparkimg.write_image('bgr.jpg', to_dlpack(bgr_img))