eenn

Crates.ioeenn
lib.rseenn
version0.1.0
created_at2025-10-06 19:08:52.506591+00
updated_at2025-10-06 19:08:52.506591+00
descriptionA hybrid neural-symbolic constraint solver with cognitive reasoning capabilities
homepage
repositoryhttps://github.com/ciresnave/eenn.git
max_upload_size
id1870664
size782,355
CireSnave (ciresnave)

documentation

README

eenn β€” Enlightened Equation Neural Network

A hybrid neural-symbolic constraint solver with cognitive reasoning capabilities.

License: MIT OR Apache-2.0 Crates.io

⚠️ Status: Experimental / Research Prototype
This project is not yet ready for production use. It's a research platform exploring hybrid neural-symbolic constraint solving.

Overview

eenn is an experimental constraint solver that combines neural network guidance with symbolic reasoning to solve mathematical constraint problems. It features:

  • 🧠 Hybrid Architecture: Neural hints guide symbolic SMT solving
  • ⚑ Lightning Strike: Cognitive reasoning engine with dynamic strategy selection
  • πŸ”’ Advanced Constraint Solving: Handles linear systems, non-linear equations, and inequality ranges
  • 🎯 Smart Features: Parentheses support, inequality ranges, multi-variable systems

Quick Start

Installation

Add to your Cargo.toml:

[dependencies]
eenn = "0.1"

Or install the CLI tool:

cargo install eenn

Basic Usage

# Solve a simple equation
eenn-solve solve -p "x + y = 10 and x - y = 4"
# Output: x = 7, y = 3

# Non-linear systems
eenn-solve solve -p "x * y = 12 and x + y = 7"
# Output: x = 3, y = 4

# Parentheses support
eenn-solve solve -p "3 * (2 + 5) = 21"
# Output: (solution found)

# Inequality ranges
eenn-solve solve -p "x > 5 and x < 10"
# Output: 5 < x < 10

Features

1. Parentheses-Aware Expression Parsing

Handles nested expressions with proper operator precedence:

// Correctly parses: 3 * (2 + 5) = 21
// Evaluates inner expression first

2. Non-Linear System Solving

Uses intelligent brute-force search for small integer domains:

eenn-solve solve -p "x * y = 12 and x + y = 7"
# Finds: x = 3, y = 4 (or x = 4, y = 3)

3. Inequality Range Solutions

Shows solution ranges instead of arbitrary single values:

eenn-solve solve -p "x >= 0 and x <= 100"
# Output: 0 <= x <= 100

eenn-solve solve -p "x > 5 and x <= 15"
# Output: 5 < x <= 15

4. Lightning Strike Cognitive Engine

Dynamic reasoning strategy selection based on problem characteristics:

  • Linear Algebra for systems of linear equations
  • Symbolic SMT for complex constraints
  • Neural Guidance for pattern recognition
  • Brute Force for small non-linear systems

Architecture

Hybrid Reasoning Pipeline

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  User Constraintβ”‚
β”‚     Parser      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Lightning      β”‚
β”‚    Strike       │◄─── Cognitive branch selection
β”‚   Reasoning     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
         β”œβ”€β–Ί Neural Surrogate (pattern hints)
         β”‚
         β”œβ”€β–Ί SMT Backend (symbolic solving)
         β”‚       β”œβ”€β–Ί Linear System Solver
         β”‚       β”œβ”€β–Ί Non-Linear Brute Force
         β”‚       └─► Inequality Range Detector
         β”‚
         └─► Hybrid Verification

Key Components

  • theory_core: Core constraint solving logic, SMT backend, Lightning Strike engine
  • constraint_parser: Expression parsing with parentheses support
  • smt_stub: Linear, non-linear, and inequality solvers
  • lightning_strike: Cognitive reasoning and strategy selection
  • surrogate: Neural network guidance (demo implementation)

Library Usage

As a Constraint Solver

use eenn::constraint_parser::parse_constraints;
use theory_core::{SmtBackend, ConstraintSolver};

// Parse constraints
let (constraints, var_map) = parse_constraints("x + y = 10 and x > 5")?;

// Solve
let backend = SmtBackend::new();
let solution = backend.solve(&constraints)?;

// Access results
if solution.satisfiable {
    for (var, value) in &solution.assignment {
        println!("{} = {}", var, value);
    }
    
    // Check for ranges (inequalities)
    if let Some(ranges) = &solution.variable_ranges {
        for (var, range) in ranges {
            println!("{}", range); // e.g., "5 < x"
        }
    }
}

As a Neural Network Library

eenn also provides basic neural network building blocks:

use eenn::{FunctionRegistry, Neuron, Stage, relu, scale};

// Create a function registry
let mut registry = FunctionRegistry::empty();
registry.register_fn("relu", relu, "ReLU activation");

// Build a simple neuron
let neuron = Neuron::new(
    vec![Stage::new(scale(2.0))],
    Stage::new(relu)
);

// Evaluate
let output = neuron.eval(3.0); // = relu(6.0) = 6.0

Command-Line Interface

eenn-solve

The eenn-solve binary provides an interactive constraint solving interface:

# Basic solving
eenn-solve solve -p "equation"

# Verbose mode (shows strategy and timing)
eenn-solve solve -p "equation" -v

# Interactive mode
eenn-solve solve

Examples

# Linear systems
eenn-solve solve -p "2*x + 3*y = 13 and x - y = 1"

# Non-linear
eenn-solve solve -p "x^2 = 16"

# Inequalities
eenn-solve solve -p "x >= 10 and x <= 20"

# Complex expressions with parentheses
eenn-solve solve -p "2 * (x + 3) = 10"

Advanced Features

Zero-Copy Serialization (Optional)

eenn uses rkyv for optional zero-copy serialization of neural network architectures:

[dependencies]
eenn = { version = "0.1", features = ["rkyv"] }
# Run tests with rkyv
cargo test --features rkyv

# Unsafe fast path (trusted inputs only)
cargo test --features "rkyv rkyv_unchecked"

Note: The rkyv feature provides zero-copy deserialization for optimal performance. Neural network weights use standard serde serialization.

GPU Acceleration (Experimental)

[dependencies]
eenn = { version = "0.1", features = ["gpu"] }

GPU support is experimental and requires WGPU-compatible hardware.

Known Limitations

  1. Reversed Comparisons: 5 < x must be written as x > 5

    • Parser currently expects variable on the left side
    • Workaround: Rewrite constraints in standard form
  2. Non-Linear Complexity: Brute-force search limited to small domains

    • Default range: -20 to 20
    • Maximum combinations: 1,000,000
    • Use for small integer problems only
  3. Inequality Mixing: Mixed equality/inequality constraints may not optimize ranges

    • Pure inequality constraints β†’ range output
    • Mixed constraints β†’ single value from equality solver

Benchmarking

The repository includes benchmarks comparing different solving strategies and serialization performance.

Running Benchmarks

# Run all benchmarks
cargo bench --all-features

# Run specific benchmark
cargo bench --bench simple_bench

# Compare rehydration performance
cargo bench --bench rehydration_bench

The benchmarks compare:

  • Solving Strategies: Linear vs. brute-force vs. symbolic SMT
  • Serialization: Standard serde vs. rkyv zero-copy
  • Rehydration: Validated vs. unchecked deserialization paths

Note: For reproducible results, pin dependencies and use consistent CPU frequency/power settings.

Development

Building from Source

# Clone the repository
git clone https://github.com/ciresnave/eenn.git
cd eenn

# Build
cargo build --release

# Run tests
cargo test

# Run with specific features
cargo test --features rkyv

Project Structure

eenn/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ lib.rs                    # Main library
β”‚   β”œβ”€β”€ constraint_parser.rs      # Expression parsing
β”‚   β”œβ”€β”€ models.rs                 # Neural network serialization
β”‚   β”œβ”€β”€ nn.rs                     # Neural network training
β”‚   └── bin/
β”‚       └── eenn-solve.rs         # CLI application
β”œβ”€β”€ crates/
β”‚   β”œβ”€β”€ theory_core/              # Core constraint solving
β”‚   β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”‚   β”œβ”€β”€ smt_stub.rs       # SMT backend
β”‚   β”‚   β”‚   β”œβ”€β”€ lightning_strike.rs # Cognitive reasoning
β”‚   β”‚   β”‚   β”œβ”€β”€ surrogate.rs      # Neural guidance
β”‚   β”‚   β”‚   └── ir.rs             # Constraint IR
β”‚   β”‚   └── Cargo.toml
β”‚   └── lightning_strike/         # Standalone reasoning crate
β”œβ”€β”€ tests/                        # Integration tests
β”œβ”€β”€ examples/                     # Example programs
└── benches/                      # Benchmarks

Running Benchmarks

cargo bench

Future Directions

eenn v2 is planned as a complete rewrite built on:

  • Candle: Modern Rust tensor library
  • llama.cpp: Efficient LLM inference
  • vLLM: Production-grade serving

This will enable true neural constraint solving with real language models.

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Submit a pull request

License

Licensed under either of:

at your option.

Citation

If you use eenn in your research, please cite:

@software{eenn2025,
  author = {Evans, Eric},
  title = {eenn: Enlightened Equation Neural Network},
  year = {2025},
  url = {https://github.com/ciresnave/eenn}
}

Acknowledgments

eenn builds on research in:

  • Hybrid neural-symbolic reasoning
  • SMT solving and constraint satisfaction
  • Cognitive architectures for AI

Contact


Status: Experimental / Research Prototype

This is a research project exploring hybrid neural-symbolic constraint solving. While functional, it is not recommended for production use without thorough testing for your specific use case.

Commit count: 0

cargo fmt