egobox-moe

Crates.ioegobox-moe
lib.rsegobox-moe
version
sourcesrc
created_at2022-04-12 13:41:51.133461
updated_at2025-02-14 14:46:37.360817
descriptionA library for mixture of expert gaussian processes
homepagehttps://github.com/relf/egobox
repositoryhttps://github.com/relf/egobox/crates/moe
max_upload_size
id566438
Cargo.toml error:TOML parse error at line 18, column 1 | 18 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include`
size0
RĂ©mi Lafage (relf)

documentation

README

Mixture of experts

crates.io docs

egobox-moe provides a Rust implementation of mixture of experts algorithm. It is a Rust port of mixture of expert of the SMT Python library.

The big picture

egobox-moe is a library crate in the top-level package egobox.

Current state

egobox-moe currently implements mixture of gaussian processes provided by egobox-gp:

  • Clustering (linfa-clustering/gmm)
  • Hard recombination / Smooth recombination
  • Gaussian processe model choice: specify regression and correlation allowed models

Examples

There is some usage examples in the examples/ directory. To run, use:

$ cargo run --release --example clustering

License

Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0

Commit count: 522

cargo fmt