Crates.io | expiring-bloom-rs |
lib.rs | expiring-bloom-rs |
version | |
source | src |
created_at | 2025-01-06 18:24:17.235811+00 |
updated_at | 2025-01-06 18:24:17.235811+00 |
description | A time-decaying Bloom filter implementation with multiple storage backends |
homepage | https://github.com/yourusername/expiring-bloom-rs |
repository | https://github.com/oiwn/expiring-bloom-rs |
max_upload_size | |
id | 1505978 |
Cargo.toml error: | TOML parse error at line 18, column 1 | 18 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include` |
size | 0 |
A Rust implementation of a time-decaying Bloom filter with multiple storage backends and a high-performance HTTP API server.
This crate provides a Bloom filter implementation that automatically expires elements after a configurable time period using a sliding window approach. It's particularly useful for rate limiting, caching, and tracking recently seen items where older data becomes less relevant over time.
The time-decaying Bloom filter uses a sliding window approach with the following characteristics:
Add this to your Cargo.toml
:
[dependencies]
expiring-bloom-rs = "0.1"
use expiring_bloom_rs::{FilterConfigBuilder, InMemorySlidingBloomFilter, SlidingBloomFilter};
use std::time::Duration;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Configure the filter
let config = FilterConfigBuilder::default()
.capacity(1000)
.false_positive_rate(0.01)
.level_duration(Duration::from_secs(60))
.max_levels(3)
.build()?;
// Create an in-memory filter
let mut filter = InMemorySlidingBloomFilter::new(config)?;
// Insert and query items
filter.insert(b"test_item")?;
assert!(filter.query(b"test_item")?);
Ok(())
}
use expiring_bloom_rs::{ServerConfigBuilder, FilterConfigBuilder};
use std::time::Duration;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Configure the server
let server_config = ServerConfigBuilder::default()
.server_host("127.0.0.1".to_string())
.server_port(3000)
.bloom_db_path("bloom.redb".to_string())
.bloom_capacity(10000)
.bloom_false_positive_rate(0.01)
.bloom_level_duration(Duration::from_secs(60))
.bloom_max_levels(3)
.build()?;
// Start the server
expiring_bloom_rs::run_server(server_config).await?;
Ok(())
}
The HTTP server provides the following REST endpoints:
GET /health
- Health check endpointPOST /items
- Insert an item into the filterGET /items/{value}
- Query if an item exists in the filterPOST /cleanup
- Manually trigger cleanup of expired items/swagger-ui
- Interactive API documentationThe filter can be configured with the following parameters:
capacity
: Maximum number of elements (default: 1000)false_positive_rate
: Desired false positive rate (default: 0.01)level_duration
: Duration after which entries in a level expire (default: 60s)max_levels
: Number of filter levels for time-based expiration (default: 3)Bro, it's 🦀🦀🦀 RUST 🦀🦀🦀 and its BLAZINGLY FAST 🚀🚀🚀
Memory usage is calculated as:
total_bits = capacity * max_levels
memory_bytes = total_bits / 8
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
This project is licensed under the MIT License - see the LICENSE file for details.