Crates.io | f3l_segmentation |
lib.rs | f3l_segmentation |
version | 0.2.1 |
source | src |
created_at | 2024-05-17 00:14:32.870842 |
updated_at | 2024-05-31 02:13:03.226766 |
description | 3D Point Cloud Library |
homepage | |
repository | https://github.com/Donvlouss/f3l |
max_upload_size | |
id | 1242666 |
size | 138,795 |
Compute cluster or models for data.
// Init parameter
let parameter = F3lClusterParameter {
tolerance: 0.02f32,
nb_in_tolerance: 1,
min_nb_data: 100,
max_nb_data: 25000,
max_nb_cluster: 5,
};
// New and insert data.
let mut extractor = EuclideanClusterExtractor::new(parameter);
// Start extracting.
let clusters = extractor.extract(&vertices);
// Random color for each cluster.
let colors = (0..clusters.len())
.map(|_| random_color())
.collect::<Vec<_>>();
// Get points of each cluster.
let clusters = (0..clusters.len())
.map(|i| extractor.at(i).unwrap())
.collect::<Vec<_>>();
Generic Parameter of cluster method.
#[derive(Debug, Clone, Copy, Default)]
pub struct F3lClusterParameter<T: BasicFloat> {
/// `K`-NN or `Radius` search
pub tolerance: T,
/// K-`NN` or `points` in Radius search
pub nb_in_tolerance: usize,
/// Add to clusters when numbers of cluster more than this
pub min_nb_data: usize,
/// Add to clusters when numbers of cluster smaller than this
pub max_nb_data: usize,
/// Set maximum numbers of clusters
pub max_nb_cluster: usize,
}
let vertices = load_ply("../../data/table_remove_plane.ply");
let parameter = F3lClusterParameter {
tolerance: 0.02f32,
nb_in_tolerance: 1,
min_nb_data: 100,
max_nb_data: 25000,
max_nb_cluster: 5,
};
let mut extractor = EuclideanClusterExtractor::with_data(parameter);
let clusters = extractor.extract(&vertices);
let clusters = (0..clusters.len())
.map(|i| extractor.at(i).unwrap())
.collect::<Vec<_>>();
let vertices = load_ply("../../data/table_remove_plane.ply");
let parameter = F3lClusterParameter {
tolerance: 0.02f32,
nb_in_tolerance: 20,
min_nb_data: 100,
max_nb_data: vertices.len(),
max_nb_cluster: 5,
};
let mut extractor = DBScan::with_data(parameter);
let clusters = extractor.extract(&vertices);
let clusters = (0..clusters.len())
.map(|i| extractor.at(i).unwrap())
.collect::<Vec<_>>();
Find Plane
, Sphere
, Circle3D
, Line3D
, or customize.
// Init parameter.
let parameter = SacAlgorithmParameter {
probability: 0.99,
threshold: 0.02,
max_iterations: 2000,
threads: 1,
};
// New and insert a Model of Plane.
let mut model = SacModelPlane::with_data(&vertices);
let mut algorithm = SacRansac {
parameter,
inliers: vec![],
};
// Compute and get result.
let result = algorithm.compute(&mut model);
if !result {
println!("Segmentation Failed");
return;
}
// Get Plane Coefficients.
let factor = model.get_coefficient();
// Get Points on plane.
let inlier = algorithm.inliers;
Currently only support RANSAC
.
Algorithms use generic parameters.
#[derive(Debug, Clone, Copy)]
pub struct SacAlgorithmParameter {
/// Probability: default `0.99`
pub probability: f32,
/// Value of threshold
pub threshold: f32,
/// If reach `max_iteration`, Optimization will be `terminate`.
pub max_iterations: usize,
/// Use parallel. Default `1` (single thread).
pub threads: usize,
}
Algorithm implement below traits:
pub trait SacAlgorithmGetter {
fn get_inliers(&self) -> &Vec<usize>;
}
pub trait SacAlgorithm<'a, P: Copy, T, R>: SacAlgorithmGetter
where
T: BasicFloat,
R: SacModel<'a, P, T>,
{
fn compute(&mut self, model: &mut R) -> bool;
}
Represent model of shapes. Customize need to implement below.
Model Trait:
pub trait SacModel<'a, P: Copy, T: BasicFloat> {
type SampleIdxType;
type CoefficientsType;
const NB_SAMPLE: usize;
const NB_COEFFICIENTS: usize;
fn set_data(&mut self, data: &'a [P]);
/// Set `NB_COEFFICIENTS` array.
fn set_coefficient(&mut self, factor: &Self::CoefficientsType);
/// Get `NB_COEFFICIENTS` array.
fn get_coefficient(&self) -> Self::CoefficientsType;
/// Get random sample points.
fn samples(&self) -> &[P];
/// Numbers of data
fn data_len(&self) -> usize {
self.samples().len()
}
/// Random numbers of indices by `NB_SAMPLE`.
fn get_random_sample_id(&self) -> Vec<usize> {
let mut rng = rand::thread_rng();
let nb = self.data_len();
use std::collections::HashSet;
let mut set = HashSet::new();
while set.len() < Self::NB_SAMPLE {
set.insert(rng.gen_range(0..nb));
}
set.into_iter().collect()
}
/// Returns a distance list and uses `coefficients` to calculate the distance from data to the model.
fn get_distance_to_model(&self, coefficients: &Self::CoefficientsType) -> Vec<T> {
self.samples()
.iter()
.map(|&p| Self::compute_point_to_model(p, coefficients))
.collect()
}
/// Return indices of distance between point and `coefficients` smaller than `tolerance`.
fn select_indices_within_tolerance(
&self,
coefficients: &Self::CoefficientsType,
tolerance: T,
) -> Vec<usize> {
let data = self.samples();
(0..data.len())
.filter(|&i| Self::compute_point_to_model(data[i], coefficients) < tolerance)
.collect()
}
/// Return numbers which between point and `coefficients` smaller than `tolerance`.
fn count_indices_within_tolerance(
&self,
coefficients: &Self::CoefficientsType,
tolerance: T,
) -> usize {
let data = self.samples();
(0..data.len())
.filter(|&i| Self::compute_point_to_model(data[i], coefficients) < tolerance)
.map(|_| 1)
.sum()
}
/// Return distance between target `point` and `coefficients`.
fn compute_point_to_model(p: P, coefficients: &Self::CoefficientsType) -> T;
/// Get array of indices of samples.
fn get_random_samples(&self) -> Self::SampleIdxType;
/// Return `CoefficientsType` of samples.
///
/// # Err
/// * Numbers of data smaller than `NB_SAMPLE`.
/// * Samples could not be computed.
/// (ex: samples are overlay or parallel each other.)
fn compute_model_coefficients(
&self,
samples: &Self::SampleIdxType,
) -> Result<Self::CoefficientsType, String>;
}
Models: