Crates.io | fast-float2 |
lib.rs | fast-float2 |
version | 0.2.3 |
source | src |
created_at | 2024-10-30 18:00:21.341122 |
updated_at | 2024-10-31 22:41:55.29336 |
description | Fast floating-point number parser. |
homepage | |
repository | https://github.com/Alexhuszagh/fast-float-rust |
max_upload_size | |
id | 1428924 |
size | 128,850 |
This crate provides a super-fast decimal number parser from strings into floats.
[dependencies]
fast-float2 = "0.2.3"
There are no dependencies and the crate can be used in a no_std context by disabling the "std" feature.
Compiler support: rustc 1.37+.
This crate is in maintenance mode for bug fixes (especially security patches): minimal feature enhancements will be accepted. This implementation has been adopted by the Rust standard library: if you do not need parsing directly from bytes and/or partial parsers, you should use FromStr for f32 or f64 instead.
There's two top-level functions provided:
parse()
and
parse_partial()
, both taking
either a string or a bytes slice and parsing the input into either f32
or f64
:
parse()
treats the whole string as a decimal number and returns an error if there are
invalid characters or if the string is empty.parse_partial()
tries to find the longest substring at the beginning of the given input
string that can be parsed as a decimal number and, in the case of success, returns the parsed
value along the number of characters processed; an error is returned if the string doesn't
start with a decimal number or if it is empty. This function is most useful as a building
block when constructing more complex parsers, or when parsing streams of data.Example:
// Parse the entire string as a decimal number.
let s = "1.23e-02";
let x: f32 = fast_float2::parse(s).unwrap();
assert_eq!(x, 0.0123);
// Parse as many characters as possible as a decimal number.
let s = "1.23e-02foo";
let (x, n) = fast_float2::parse_partial::<f32, _>(s).unwrap();
assert_eq!(x, 0.0123);
assert_eq!(n, 8);
assert_eq!(&s[n..], "foo");
This crate is a direct port of Daniel Lemire's fast_float
C++ library (valuable discussions with Daniel while porting it helped shape the crate and get it to
the performance level it's at now), with some Rust-specific tweaks. Please see the original
repository for many useful details regarding the algorithm and the implementation.
The parser is locale-independent. The resulting value is the closest floating-point values (using either
f32
or f64
), using the "round to even" convention for values that would otherwise fall right in-between
two values. That is, we provide exact parsing according to the IEEE standard.
Infinity and NaN values can be parsed, along with scientific notation.
Both little-endian and big-endian platforms are equally supported, with extra optimizations enabled on little-endian architectures.
Since fast-float-rust is unmaintained, this is a fork containing the patches and security updates.
There are a few ways this crate is tested:
The presented parser seems to beat all of the existing C/C++/Rust float parsers known to us at the moment by a large margin, in all of the datasets we tested it on so far – see detailed benchmarks below (the only exception being the original fast_float C++ library, of course – performance of which is within noise bounds of this crate). On modern machines like Apple M1, parsing throughput can reach up to 1.5 GB/s.
In particular, it is faster than Rust standard library's FromStr::from_str()
by a factor of 2-8x
(larger factor for longer float strings), and is typically 2-3x faster than the nearest competitors.
While various details regarding the algorithm can be found in the repository for the original C++ library, here are few brief notes:
Below are tables of best timings in nanoseconds for parsing a single number into a 64-bit float.
Intel i7-4771 3.5GHz, macOS, Rust 1.49.
canada |
mesh |
uniform |
iidi |
iei |
rec32 |
|
---|---|---|---|---|---|---|
fast-float | 21.58 | 10.70 | 19.36 | 40.50 | 26.07 | 29.13 |
lexical | 65.90 | 23.28 | 54.75 | 75.80 | 52.18 | 75.36 |
from_str | 174.43 | 22.30 | 99.93 | 227.76 | 111.31 | 204.46 |
fast_float (C++) | 22.78 | 10.99 | 20.05 | 41.12 | 27.51 | 30.85 |
abseil (C++) | 42.66 | 32.88 | 46.01 | 50.83 | 46.33 | 49.95 |
netlib (C) | 57.53 | 24.86 | 64.72 | 56.63 | 36.20 | 67.29 |
strtod (C) | 286.10 | 31.15 | 258.73 | 295.73 | 205.72 | 315.95 |
Apple M1, macOS, Rust 1.49.
canada |
mesh |
uniform |
iidi |
iei |
rec32 |
|
---|---|---|---|---|---|---|
fast-float | 14.84 | 5.98 | 11.24 | 33.24 | 21.30 | 17.86 |
lexical | 47.09 | 16.51 | 43.46 | 56.06 | 36.68 | 55.48 |
from_str | 136.00 | 13.84 | 74.64 | 179.87 | 77.91 | 154.53 |
fast_float (C++) | 13.71 | 7.28 | 11.71 | 32.94 | 20.64 | 18.30 |
abseil (C++) | 36.55 | 24.20 | 38.48 | 40.86 | 35.46 | 40.09 |
netlib (C) | 47.19 | 14.12 | 48.85 | 52.28 | 33.70 | 48.79 |
strtod (C) | 176.13 | 21.48 | 165.43 | 187.98 | 132.19 | 190.63 |
AMD Rome, Linux, Rust 1.49.
canada |
mesh |
uniform |
iidi |
iei |
rec32 |
|
---|---|---|---|---|---|---|
fast-float | 25.90 | 12.12 | 20.54 | 47.01 | 29.23 | 32.36 |
lexical | 63.18 | 22.13 | 54.78 | 81.23 | 55.06 | 79.14 |
from_str | 190.06 | 26.10 | 102.44 | 239.87 | 119.04 | 211.73 |
fast_float (C++) | 21.29 | 10.47 | 18.31 | 42.33 | 24.56 | 29.76 |
abseil (C++) | 44.54 | 34.13 | 47.38 | 52.64 | 43.77 | 53.03 |
netlib (C) | 69.43 | 23.31 | 79.98 | 72.17 | 35.81 | 86.91 |
strtod (C) | 123.37 | 65.68 | 101.58 | 118.36 | 118.61 | 123.72 |
fast-float
- this very cratelexical
– lexical_core
, v0.7 (non-lossy; same performance as lossy)from_str
– Rust standard library, FromStr
traitfast_float (C++)
– original C++ implementation of 'fast-float' methodabseil (C++)
– Abseil C++ Common Librariesnetlib (C++)
– C++ Network Librarystrtod (C)
– C standard librarycanada
– numbers in canada.txt
filemesh
– numbers in mesh.txt
fileuniform
– uniform random numbers from 0 to 1iidi
– random numbers of format %d%d.%d
iei
– random numbers of format %de%d
rec32
– reciprocals of random 32-bit integersextras/simple-bench
of this repo.