fast-shard

Crates.iofast-shard
lib.rsfast-shard
version
sourcesrc
created_at2024-11-06 10:02:02.651118
updated_at2024-11-06 12:53:29.550372
descriptionHigh-performance configurable sharding library with SIMD optimizations
homepage
repositoryhttps://github.com/aeromilai/fast-shard
max_upload_size
id1438059
Cargo.toml error:TOML parse error at line 18, column 1 | 18 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include`
size0
Kol Influence (kolinfluence)

documentation

https://docs.rs/fast-shard

README

fast-shard

Crates.io Documentation License: MIT OR Apache-2.0

A high-performance, configurable sharding library that leverages CPU vector instructions (AVX-512, AVX2, AES-NI) and efficient hashing algorithms (XXH3, FNV1a) for optimal performance across different key sizes.

Features

  • 🚀 Multiple sharding algorithms optimized for different key sizes
  • ⚡ Hardware acceleration using AVX-512, AVX2, and AES-NI instructions
  • 🔧 Fully configurable algorithm selection based on key sizes
  • 📊 Built-in benchmarking suite
  • 🛡️ Comprehensive test coverage
  • 🔄 Automatic fallback to best available algorithm

Quick Start

Add to your Cargo.toml:

[dependencies]
fast-shard = "0.1.2"

Basic usage:

use fast_shard::FastShard;

// Create a sharding instance with default configuration
let shard = FastShard::new(1024); // 1024 shards

// Shard some data
let key = b"example key";
let shard_number = shard.shard(key);

Performance

Default algorithm selection by key size:

Key Size Algorithm Priority
≤16 bytes AVX512 → AVX2 → AES-NI → FNV1a → XXH3
>16 bytes AVX512 → AVX2 → AES-NI → XXH3 → FNV1a

Custom Configuration

Create custom sharding configurations based on your specific needs:

use fast_shard::{FastShard, ShardConfig, ShardTier, ShardAlgorithm};

let config = ShardConfig {
    tiers: vec![
        ShardTier {
            size_range: 0..=128,
            algorithms: vec![
                ShardAlgorithm::Avx512,
                ShardAlgorithm::AesNi,
                ShardAlgorithm::Fnv1a,
            ],
        },
        ShardTier {
            size_range: 129..=1024,
            algorithms: vec![
                ShardAlgorithm::Avx512,
                ShardAlgorithm::Avx2,
                ShardAlgorithm::Xxh3,
            ],
        },
    ],
    default_algorithms: vec![ShardAlgorithm::Xxh3],
};

let shard = FastShard::with_config(1024, config);

Feature Flags

  • nightly - Enable nightly features (required for AVX-512)
  • runtime-detection - Enable runtime CPU feature detection
  • std - Standard library support (enabled by default)

CPU Feature Requirements

For optimal performance, enable CPU features in your .cargo/config.toml:

[build]
rustflags = ["-C", "target-cpu=native"]

Or enable specific features:

[build]
rustflags = [
    "-C", "target-feature=+avx2,+aes"
]

Benchmarking

Run the benchmark suite:

cargo bench

Examples

Basic Usage

use fast_shard::FastShard;

let shard = FastShard::new(1024);
let key = b"example key";
println!("Shard: {}", shard.shard(key));

With Custom Configuration

use fast_shard::{FastShard, ShardConfig, ShardTier, ShardAlgorithm};

// Configure for specific key size ranges
let config = ShardConfig {
    tiers: vec![
        ShardTier {
            size_range: 0..=64,
            algorithms: vec![ShardAlgorithm::Fnv1a],
        },
        ShardTier {
            size_range: 65..=1024,
            algorithms: vec![ShardAlgorithm::Xxh3],
        },
    ],
    default_algorithms: vec![ShardAlgorithm::Xxh3],
};

let shard = FastShard::with_config(1024, config);

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

Licensed under either of:

at your option.

Credits

This crate uses the following high-quality dependencies:

Safety

This crate uses unsafe code for SIMD operations but maintains safety through:

  • Careful bounds checking
  • Extensive testing including property-based tests
  • Runtime CPU feature detection when enabled
  • Proper alignment handling

Benchmark

sample benchmarks by running the following: 
cargo bench --bench hash_comparison

time:   [2.3172 ns 2.3432 ns 2.3756 ns]
Found 12 outliers among 100 measurements (12.00%)
  4 (4.00%) high mild
  8 (8.00%) high severe
hash_comparison/AVX2/4  time:   [2.2711 ns 2.2934 ns 2.3242 ns]
Found 4 outliers among 100 measurements (4.00%)
  2 (2.00%) high mild
  2 (2.00%) high severe
hash_comparison/AES-NI/4
                        time:   [2.2902 ns 2.3002 ns 2.3111 ns]
Found 5 outliers among 100 measurements (5.00%)
  3 (3.00%) high mild
  2 (2.00%) high severe
hash_comparison/XXH3/4  time:   [2.2938 ns 2.3060 ns 2.3191 ns]
Found 6 outliers among 100 measurements (6.00%)
  5 (5.00%) high mild
  1 (1.00%) high severe
hash_comparison/FNV1a/4 time:   [2.4171 ns 2.4227 ns 2.4294 ns]
Found 6 outliers among 100 measurements (6.00%)
  4 (4.00%) high mild
  2 (2.00%) high severe
hash_comparison/AVX512/8
                        time:   [2.3122 ns 2.3411 ns 2.3753 ns]
Found 9 outliers among 100 measurements (9.00%)
  3 (3.00%) high mild
  6 (6.00%) high severe
hash_comparison/AVX2/8  time:   [2.3110 ns 2.3273 ns 2.3462 ns]
Found 9 outliers among 100 measurements (9.00%)
  5 (5.00%) high mild
  4 (4.00%) high severe
hash_comparison/AES-NI/8
                        time:   [2.2988 ns 2.3104 ns 2.3245 ns]
Found 6 outliers among 100 measurements (6.00%)
  2 (2.00%) high mild
  4 (4.00%) high severe
hash_comparison/XXH3/8  time:   [2.2962 ns 2.3069 ns 2.3183 ns]
Found 4 outliers among 100 measurements (4.00%)
  1 (1.00%) high mild
  3 (3.00%) high severe
hash_comparison/FNV1a/8 time:   [3.1421 ns 3.1637 ns 3.1879 ns]
Found 8 outliers among 100 measurements (8.00%)
  7 (7.00%) high mild
  1 (1.00%) high severe

Changelog

See CHANGELOG.md for a list of changes.

Commit count: 25

cargo fmt