Crates.io | flatk |
lib.rs | flatk |
version | 0.5.2 |
source | src |
created_at | 2020-02-28 20:25:51.319983 |
updated_at | 2021-12-07 23:19:08.930576 |
description | Flat layout abstraction toolkit. |
homepage | https://github.com/elrnv/flatk |
repository | https://github.com/elrnv/flatk |
max_upload_size | |
id | 213635 |
size | 622,270 |
flatk
Flat layout abstraction toolkit.
This library defines low level primitives for organizing flat ordered data collections (like Vec
s
and slice
s) into meaningful structures without cloning the data.
More specifically, flatk
provides a few core composable types intended for building more complex
data structures out of existing data:
UniChunked
: Subdivides a collection into a number of uniformly sized (at compile time or
run-time) contiguous groups.
For example if we have a Vec
of floats representing 3D positions, we may wish to interpret them
as triplets:
use flatk::Chunked3;
let pos_data = vec![0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0];
let pos = Chunked3::from_flat(pos_data);
assert_eq!(pos[0], [0.0; 3]);
assert_eq!(pos[1], [1.0; 3]);
assert_eq!(pos[2], [0.0, 1.0, 0.0]);
Chunked
: Subdivides a collection into a number of unstructured (non-uniform) groups.
For example we may have a non-uniform grouping of nodes stored in a Vec
, which can represent a
directed graph:
use flatk::Chunked;
let neighbours = vec![1, 2, 0, 1, 0, 1, 2];
let neigh = Chunked::from_sizes(vec![1,2,1,3], neighbours);
assert_eq!(&neigh[0][..], &[1][..]);
assert_eq!(&neigh[1][..], &[2, 0][..]);
assert_eq!(&neigh[2][..], &[1][..]);
assert_eq!(&neigh[3][..], &[0, 1, 2][..]);
Here neigh
defines the following graph:
0<--->1<--->2
^ ^ ^
\ | /
\ | /
\ | /
\ | /
\|/
3
Select
: An ordered selection (with replacement) of elements from a
given random access collection. This is usually realized with a Vec<usize>
representing indices
into the original data collection.
For example one may wish to select game pieces in a board game:
use flatk::Select;
let pieces = vec!["Pawn", "Knight", "Bishop", "Rook", "Queen", "King"];
let white_pieces = Select::new(vec![3, 1, 2, 5, 4, 2, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0], pieces.as_slice());
let black_pieces = Select::new(vec![0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 2, 5, 4, 2, 1, 3], pieces.as_slice());
assert_eq!(white_pieces[0], "Rook");
assert_eq!(white_pieces[4], "Queen");
assert_eq!(black_pieces[0], "Pawn");
assert_eq!(black_pieces[11], "King");
Subset
: Similar to Select
but Subset
enforces an unordered selection without replacement.
For example we can choose a hand from a deck of cards:
use flatk::{Subset, Get, View};
let rank = vec!["Ace", "2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King"];
let suit = vec!["Clubs", "Diamonds", "Hearts", "Spades"];
// Natural handling of structure of arrays (SoA) style data.
let deck: (Vec<_>, Vec<_>) = (
rank.into_iter().cycle().take(52).collect(),
suit.into_iter().cycle().take(52).collect()
);
let hand = Subset::from_indices(vec![4, 19, 23, 1, 0, 5], deck);
let hand_view = hand.view();
assert_eq!(hand_view.at(0), (&"Ace", &"Clubs"));
assert_eq!(hand_view.at(1), (&"2", &"Diamonds"));
assert_eq!(hand_view.at(2), (&"5", &"Clubs"));
assert_eq!(hand_view.at(3), (&"6", &"Diamonds"));
assert_eq!(hand_view.at(4), (&"7", &"Spades"));
assert_eq!(hand_view.at(5), (&"Jack", &"Spades"));
Sparse
: A sparse data assignment to another collection. Effectively this type attaches another
data set to a Select
ion.
For example we can represent a sparse vector by assigning values to a selection of indices:
use flatk::{Sparse, Get, View};
let values = vec![1.0, 2.0, 3.0, 4.0];
let sparse_vector = Sparse::from_dim(vec![0,5,10,100], 1000, values);
let sparse_vector_view = sparse_vector.view();
assert_eq!(sparse_vector_view.at(0), (0, &1.0));
assert_eq!(sparse_vector_view.at(1), (5, &2.0));
assert_eq!(sparse_vector_view.at(2), (10, &3.0));
assert_eq!(sparse_vector_view.at(3), (100, &4.0));
assert_eq!(sparse_vector_view.selection.target, ..1000);
In this scenario, the target set is just the range 0..1000
, however in general this can be any
data set, which makes Sparse
an implementation of a one-to-one mapping or a directed graph
with disjoint source and target node sets.
Currently, the goal of this library is to provide useful primitives for organizing large arrays of data with the following features:
Suppose we want to build a sparse matrix of 3x3 dense block matrices. To motivate why we may want to do this, we can evaluate a common alternative approach. One may choose to use an off-the-shelf sparse matrix like a compressed sparse row (CSR) matrix, which will redistribute the values of the 3x3 blocks into non-local positions in the value array. This can have performance implications, for instance, when computing matrix products. Moreover, a standard CSR matrix will need to iterate 9x more times than the equivalent block CSR (BCSR) matrix. So let's walk through the process of defining a BCSR matrix using traditional Rust and then using our primitive types.
The compressed sparse row structure consists of a dynamically sized array of rows, and a dynamically
sized array of elements in each row along with accompanying column indices. In traditional Rust we
may write this as Vec<Vec<(usize, T)>>
where usize
is the column index and T
is a element type
like f32
. This type loses locality between rows and incurs additional indirection for each row, as
well as other problems with Array or Structures (AoS) types (e.g. lack of automatic SIMD
optimizations). To alleviate this, an SoA type will typically be used like
struct CSR<T> {
column_indices: Vec<usize>,
offsets: Vec<usize>,
data: Vec<T>,
}
where offsets
indicates where each row begins and ends and column_indices
and data
are the
column indices and element values in each row stored contiguously. This also means that we must
write additional code to ensure that offsets
is valid (bounds and monotonicity checks),
and when building algorithms, we have to conciously maintain these invariants.
To construct the equivalent BCSR matrix, one can replace T
with a matrix type.
The pattern of maintaining offsets, for what is effectively two nested Vec
s, is very common in
geometry processing pipelines. This mechanism is supplied by Chunked
. Supplying a sparse set of
values to a set of indices (e.g. a range of indices from 0 to # columns) is provided by Sparse
.
Thus a CSR matrix can be written simply as
Chunked<Sparse<Vec<T>, Vec<usize>>, RangeTo<usize>, Vec<usize>>
.
Notice that all of the necessary Vec
s needed to make this work are part of the type.
For convenience, the default type parameters allow one to simply write Chunked<Sparse<Vec<T>>>
.
For a BCSR matrix, one would use Chunked<Sparse<Chunked3<Chunked3<Vec<T>>>>>
(or alternatively
replace T
with a matrix type as before, if the underlying data is never interpreted as a
contiguous array of numbers).
This library is a response to the frustration of rewriting the same bookkeeping code for managing
arrays of data in geometry processing applications. In this setting all data is often known ahead
of time (as opposed to dealing with streams of data), and thus can be efficiently processed using
simple dynamically sized arrays (Vec
s in Rust) of floating point or integer data (often in
structure of arrays format). However, data often admits an intrinsically complex structure (e.g. in
an rigid or soft body animation code, a subset of 3D positions of vertices of polygonal meshes
belonging to different objects). This induces additional cognitive load from marshalling indices
and ensuring data integrity when implementing algorithms around such data. The goal of this library
is to reduce this cognitive load and allow users to focus on the data structures and algorithms
without any additional performance penalties.
Different applications have different performance characteristics. It is not a goal of this library
to prescribe a particular usage of the data types provided. Instead, flatk
aims to provide domain
agnostic abstractions for common code patterns found in data processing applications. For instance,
processing data through a Subset
may be faster than cloning when subsets are sufficiently large
but slower if they are small since a cloned subset can provide better data locality.
This is an exploratory project to determine if this kind of abstraction can simplify data processing code and make it more reusable.
To enable composability, many behaviours of contiguous collections (like Vec
and slice
) from the
standard library have been extracted into micro-traits (e.g. SplitAt
), which need to be
implemented for each new composable type. This means that in order to wrap custom struct
s
inside types provided in this library, the structs must impleent our traits. For instance,
if a set of particles has position and velocity attributes, it may makes sense to store the
attributes in a struct as
struct Particles {
pos: Vec<[f32; 3]>,
vel: Vec<[f32; 3]>,
}
However, in order to compose Particles
with say Chunked
, one will need to implement SplitAt
,
Set
and Dummy
traits to enable iteration. We provide a component macro that implements our
traits for each new struct automatically. So in order for Particles
to be usable with Chunked
,
we should derive Component
for a ParticleComponent
struct make each field that may be chunked generic, and
separately define Particles
as a type alias to ParticleComponent
with the specified storage
types (Vec
s):
#[derive(Component)]
struct ParticleComponent<X, V> {
pos: X,
vel: V,
}
type Particles = Chunked3<ParticleComponent<Vec<f32>, Vec<f32>>>;
Then we can use Particles
as a single collection, which will yield our particles as
ParticleComponent<[f32; 3], [f32; 3]>
types:
for ParticleComponent { pos, vel } in particles.iter() {
// pos and vel are [f32; 3] arrays.
}
In order to compose multiple structs, a #[component]
attribute is available. For instance if we
can create a RigidComponent
component that uses ParticleComponent
for linear motion:
#[derive(Component)]
struct RigidComponent<X, V, O, W> {
#[component]
linear: Particle<X, V>,
orientation: O,
angular_velocity: W
}
Composability is not well supported in stable Rust (v1.41) due to some missing features like GAT (for more ergonomic indexing), specialization (for optimizations) and const generics (for better interoperability with arrays). These limitations make the proposed abstractons difficult to implement, optimize and use in some circumstances. As such this library will likely remain experimental until these features are stabilized.
Currently this library is in the prototype stage (under heavy development) and is in no way production ready. It has been used to design the underlying data structures of an experimental tensor library, which was used to develop an FEM simulator for physically based animation (TBA) capable of handling rigid bodies, cloth, soft bodies and frictional contacts between them.
This repository is licensed under either of
at your option.