Crates.io | fortuples |
lib.rs | fortuples |
version | 0.9.1 |
source | src |
created_at | 2022-10-13 20:47:55.613284 |
updated_at | 2023-10-25 22:40:08.038574 |
description | Procedural macros to generalize inherent and trait implementations over tuples |
homepage | |
repository | https://github.com/mrshiposha/fortuples |
max_upload_size | |
id | 687460 |
size | 224,170 |
Procedural macros to generalize inherent and trait implementations over tuples.
When it is a need to implement either a trait or a generalized type for a combination of tuples, Rust requires separate implementations to be provided for each tuple variety manually.
This crate provides a proc-macro fortuples!
to write code templates similar to the quote!
macro.
This macro will expand the provided code template for each tuple variety.
Also, an attribute macro #[auto_impl]
that implements a given trait for tuple combinations in a completely automatic way.
This crate is inspired by the impl_trait_for_tuples
.
impl_trait_for_tuples
struct Vector<T>(T);
fortuples! {
#[tuples::member_type(f32)]
#[tuples::min_size(2)]
#[tuples::max_size(3)]
#[tuples::tuple_name(Coords)]
impl Vector<#Coords> {
fn length(&self) -> f32 {
let coords = &self.0;
(#(#coords * #coords)+*).sqrt()
}
}
}
for_tuples!
inside the implementation bodyInstead, the fortuples!
macro follows the quote!
-like syntax without extra tokens.
trait Trait {
type Ret;
type Arg;
fn test(arg: Self::Arg) -> Self::Ret;
}
#[impl_for_tuples(5)]
impl Trait for Tuple {
for_tuples!( type Ret = ( #( Tuple::Ret ),* ); );
for_tuples!( type Arg = ( #( Tuple::Arg ),* ); );
fn test(arg: Self::Arg) -> Self::Ret {
for_tuples!( ( #( Tuple::test(arg.Tuple) ),* ) )
}
}
fortuples! {
#[tuples::max_size(5)] // <-- optional, default = 16
impl Trait for #Tuple
where
#(#Member: Trait),*
{
type Ret = ( #(#Member::Ret),* );
type Arg = ( #(#Member::Arg),* );
fn test(arg: Self::Arg) -> Self::Ret {
( #(#Member::test(#arg)),* )
}
}
}
#[impl_for_tuples(5)]
trait Notify {
fn notify(&self);
}
#[fortuples::auto_impl]
#[tuples::max_size(5)] // <-- optional, default = 16
trait Notify {
fn notify(&self);
}
fortuples!
proc-macroHere is commented example of fortuples!
usage.
See the fortuples!
macro documentation to learn about the macro settings (like #[tuples::min_size]
).
trait Trait {
type Ret;
type Arg;
type FixedType;
const VALUE: i32;
const LENGTH: usize;
fn test_assoc_fn(arg: Self::Arg) -> Self::Ret;
fn test_self_fn(&self) -> Result<(), ()>;
}
fortuples! {
#[tuples::min_size(1)]
// +----- ^^^^^^^^^^^
// | The `fortuples!` macro will generate implementations starting with the empty tuple.
// |
// | Due to the `min_size` setting,
// | the implementations will start from the `(Member0,)` tuple.
impl Trait for #Tuple
// +----------- ^^^^^
// | a meta-variable that will expand to
// | `(Member0,)`, `(Member0, Member1)`, and so on.
where
#(#Member: Trait<FixedType = i32>),*
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// | A repetition -- the code inside the `#(...),*`
// | will expand as many times as many elements are in the current #Tuple.
// |
// | Inside the i-th code fragment, the #Member meta-variable will be substituted
// | by the i-th member type of the current #Tuple.
{
// The `Ret` type will be a tuple consisting of the `Ret` types
// from the current #Tuple member types
type Ret = (#(#Member::Ret),*);
// The `Arg` type will be a tuple consisting of the `Arg` types
// from the current #Tuple member types
type Arg = (#(#Member::Arg),*);
// The `VALUE` will be a sum of all `VALUE`s of the #Tuple member types.
const VALUE: i32 = #(#Member::VALUE)+*;
// +------------------------------- ^
// | Note that a `+` sign separates the `VALUE`s.
const LENGTH: usize = #len(Tuple);
// +----------------- ^^^^^^^^^^^
// | This expands to the current #Tuple length.
type FixedType = i32;
fn test_assoc_fn(arg: Self::Arg) -> Self::Ret {
( #(#Member::test_assoc_fn(#arg)),* )
// +----------------------- ^^^
// | Any identifier after the `#` sign that is neither
// | #Tuple, #Member, nor #len(Tuple)
// | is interpreted as a tuple variable.
// |
// | So the above code will expand like this:
// | ```
// | (
// | Member0::test_assoc_fn(arg.0),
// | Member1::test_assoc_fn(arg.1),
// | ...
// | MemberN::test_assoc_fn(arg.N),
// | )
// | ```
// | where `N` equals `#len(Tuple)`
}
fn test_self_fn(&self) -> Result<(), ()> {
#(#self.test_self_fn()?;)*
// +-------------------- ^
// | Note that there is no separator here.
Ok(())
}
}
}
fortuples!
proc-macro (without comments)trait Trait {
type Ret;
type Arg;
type FixedType;
const VALUE: i32;
const LENGTH: usize;
fn test_assoc_fn(arg: Self::Arg) -> Self::Ret;
fn test_self_fn(&self) -> Result<(), ()>;
}
fortuples! {
#[tuples::min_size(1)]
impl Trait for #Tuple
where
#(#Member: Trait<FixedType = i32>),*
{
type Ret = (#(#Member::Ret),*);
type Arg = (#(#Member::Arg),*);
const VALUE: i32 = #(#Member::VALUE)+*;
const LENGTH: usize = #len(Tuple);
type FixedType = i32;
fn test_assoc_fn(arg: Self::Arg) -> Self::Ret {
( #(#Member::test_assoc_fn(#arg)),* )
}
fn test_self_fn(&self) -> Result<(), ()> {
#(#self.test_self_fn()?;)*
Ok(())
}
}
}
auto_impl
attributeThere is an option to implement a trait
in a completely automatic way using the auto_impl
attribute.
This attribute will automatically generate implementations of the given trait for tuple combinations.
See the auto_impl
documentation to learn about the
attribute's settings and limitations.
#[fortuples::auto_impl]
trait AutoImplTrait {
fn test(&self, a: i32, b: &f32);
}