Crates.io | futures-jsonrpc |
lib.rs | futures-jsonrpc |
version | 0.2.1 |
source | src |
created_at | 2019-04-16 23:03:59.517164 |
updated_at | 2019-04-22 05:44:45.887769 |
description | Futures implementation for JSON-RPC |
homepage | |
repository | https://github.com/vlopes11/futures-jsonrpc |
max_upload_size | |
id | 128466 |
size | 38,077 |
A lightweight remote procedure call protocol. It is designed to be simple! And, with futures, even more flexible!
This crate will associate Futures with method signatures via register_method, and parse/handle JSON-RPC messages via handle_message.
It is fully compliant with JSON-RPC 2.0 Specification.
The crate is not test covered yet! Any PR with a test coverage will be much appreciated :)
Add this to your Cargo.toml
:
[dependencies]
futures_jsonrpc = "0.2"
use futures_jsonrpc::futures::prelude::*;
use futures_jsonrpc::*;
use serde_json::Number;
// This macro will avoid some boilerplating, leaving only the `Future` implementation to be done
//
// Check for additional information in the detailed explanation below
//
// Also, check `generate_method_with_data_and_future` and `generate_method_with_lifetime_data_and_future`
generate_method!(
CopyParams,
impl Future for CopyParams {
type Item = Option<JrpcResponse>;
type Error = ErrorVariant;
fn poll(&mut self) -> Result<Async<Self::Item>, Self::Error> {
let request = self.get_request()?;
let params = request.get_params().clone().unwrap_or(JsonValue::Null);
let message = JrpcResponseParam::generate_result(params)
.and_then(|result| request.generate_response(result))?;
Ok(Async::Ready(Some(message)))
}
}
);
fn main() {
// `JrpcHandler` instance is responsible for registering the JSON-RPC methods and receiving the
// requests.
//
// This is full `Arc`/`RwLock` protected. Therefore, it can be freely copied/sent among
// threads.
let handler = JrpcHandler::new().unwrap();
handler
// `register_method` will tie the method signature to an instance, not a generic. This
// means we can freely mutate this instance across different signatures.
.register_method("some/copyParams", CopyParams::new().unwrap())
.and_then(|h| {
// `handle_message` will receive a raw implementation of `ToString` and return the
// associated future. If no future is found, an instance of
// `Err(ErrorVariant::MethodSignatureNotFound(String))` is returned
h.handle_message(
r#"
{
"jsonrpc": "2.0",
"method": "some/copyParams",
"params": [42, 23],
"id": 531
}"#,
)
})
// Just waiting for the poll of future. Check futures documentation.
.and_then(|future| future.wait())
.and_then(|result| {
// The result is an instance of `JrpcResponse`
let result = result.unwrap();
assert_eq!(result.get_jsonrpc(), "2.0");
assert_eq!(
result.get_result(),
&Some(JsonValue::Array(vec![
JsonValue::Number(Number::from(42)),
JsonValue::Number(Number::from(23)),
]))
);
assert!(result.get_error().is_none());
assert_eq!(result.get_id(), &JsonValue::Number(Number::from(531)));
Ok(())
})
.unwrap();
}
use futures_jsonrpc::futures::prelude::*;
use futures_jsonrpc::*;
use std::marker::PhantomData;
// `JrpcHandler` use foreign structures as controllers
// This example will reflect `generate_method_with_lifetime_data_and_future` macro
#[derive(Debug, Clone)]
pub struct CopyParams<'r> {
request: Option<JrpcRequest>,
data: (String, i32, PhantomData<&'r ()>),
}
// This implementation is essentially some boilerplate to hold the data that may be used by the
// future poll
impl<'r> CopyParams<'r> {
// The `new` method will always receive a n-tuple as parameter to store data
//
// It is recommended to use atomic types, or `Arc` protected for heavy data. At every request,
// we `Clone` this struct to send it to the responsible thread
pub fn new(data: (String, i32, PhantomData<&'r ()>)) -> Result<Self, ErrorVariant> {
let request = None;
let some_notification = CopyParams { request, data };
Ok(some_notification)
}
// The `get_data` will support the future poll with additional information that will not be
// available in the JsonRpc request
pub fn get_data(&self) -> &(String, i32, PhantomData<&'r ()>) {
&self.data
}
// The `get_request` method will return the JsonRpc request to the future poll
pub fn get_request(&self) -> Result<JrpcRequest, ErrorVariant> {
let request = self.request.clone();
request
.map(|r| Ok(r.clone()))
.unwrap_or(Err(ErrorVariant::NoRequestProvided))
}
// This method is of internal usage to receive the request from `JrpcHandler`
pub fn set_request(mut self, request: JrpcRequest) -> Result<Self, ErrorVariant> {
self.request = Some(request);
Ok(self)
}
// This "fork" will be performed every time a new request is received, allowing async
// processing
pub fn clone_with_request(&self, request: JrpcRequest) -> Result<Self, ErrorVariant> {
self.clone().set_request(request)
}
}
// `JrpcHandler` will just return a pollable associated future.
//
// The main implementation will go here
//
// Tokio provides very good documentation on futures. Check it: https://tokio.rs/
impl<'r> Future for CopyParams<'r> {
// Optimally, we want to use JrpcResponse, for it is guaranteed to respect the JSON-RPC
// specification. But, we can change the response here to something else, if required.
type Item = Option<JrpcResponse>;
type Error = ErrorVariant;
fn poll(&mut self) -> Result<Async<Self::Item>, Self::Error> {
// We fetch the provided request to copy the data
let request = self.get_request()?;
// Here we can receive additional that that's not available in the request
let (_text, _value, _) = self.get_data();
// Do something with the request
// In this example, we are copying the parameters
let params = request.get_params().clone().unwrap_or(JsonValue::Null);
// `generate_response` will receive an enum `JrpcResponseParam` and reply
// with either an error or success.
let message = JrpcResponseParam::generate_result(params)
.and_then(|result| request.generate_response(result))?;
// Then, our reply is ready
Ok(Async::Ready(Some(message)))
}
}
// The handler will call this trait to spawn a new future and process it when a registered method
// is requested.
impl<'r> JrpcMethodTrait<'r> for CopyParams<'r> {
// `generate_future` can generate any `Future` that respects the trait signature. This can be a
// foreign structure, or just a copy of `self`, in case it implements `Future`. This can also
// be a decision based on the received `JrpcRequest`.
//
// Since its not a reference, there are no restrictions.
fn generate_future(
&self,
request: JrpcRequest,
) -> Result<Box<'r + Future<Item = Option<JrpcResponse>, Error = ErrorVariant>>, ErrorVariant>
{
Ok(Box::new(self.clone_with_request(request)?))
}
}