Crates.io | ganesh |
lib.rs | ganesh |
version | 0.13.1 |
source | src |
created_at | 2024-07-13 15:48:58.99461 |
updated_at | 2024-11-08 03:23:36.049201 |
description | Function minimization in Rust, simplified |
homepage | https://github.com/denehoffman/ganesh |
repository | https://github.com/denehoffman/ganesh |
max_upload_size | |
id | 1302442 |
size | 1,327,477 |
ganesh
(/ɡəˈneɪʃ/), named after the Hindu god of wisdom, provides several common minimization algorithms as well as a straightforward, trait-based interface to create your own extensions. This crate is intended to be as simple as possible. The user needs to implement the Function
trait on some struct which will take a vector of parameters and return a single-valued Result
($f(\mathbb{R}^n) \to \mathbb{R}
$). Users can optionally provide a gradient function to speed up some algorithms, but a default central finite-difference implementation is provided so that all algorithms will work out of the box.
[!CAUTION] This crate is still in an early development phase, and the API is not stable. It can (and likely will) be subject to breaking changes before the 1.0.0 version release (and hopefully not many after that).
Ctrl-C
during a fit will still output a [Status
], but the fit message will
indicate that the fit was ended by the user.This crate provides some common test functions in the test_functions
module. Consider the following implementation of the Rosenbrock function:
use std::convert::Infallible;
use ganesh::prelude::*;
pub struct Rosenbrock {
pub n: usize,
}
impl Function<f64, (), Infallible> for Rosenbrock {
fn evaluate(&self, x: &[f64], _user_data: &mut ()) -> Result<f64, Infallible> {
Ok((0..(self.n - 1))
.map(|i| 100.0 * (x[i + 1] - x[i].powi(2)).powi(2) + (1.0 - x[i]).powi(2))
.sum())
}
}
To minimize this function, we could consider using the Nelder-Mead algorithm:
use ganesh::prelude::*;
use ganesh::algorithms::NelderMead;
fn main() -> Result<(), Infallible> {
let problem = Rosenbrock { n: 2 };
let nm = NelderMead::default();
let mut m = Minimizer::new(&nm, 2);
let x0 = &[2.0, 2.0];
m.minimize(&problem, x0, &mut ())?;
println!("{}", m.status);
Ok(())
}
This should output
╒══════════════════════════════════════════════════════════════════════════════════════════════╕
│ FIT RESULTS │
╞════════════════════════════════════════════╤════════════════════╤═════════════╤══════════════╡
│ Status: Converged │ fval: +2.281E-4 │ #fcn: 76 │ #grad: 76 │
├────────────────────────────────────────────┴────────────────────┴─────────────┴──────────────┤
│ Message: term_f = STDDEV │
├───────╥──────────────┬──────────────╥──────────────┬──────────────┬──────────────┬───────────┤
│ Par # ║ Value │ Uncertainty ║ Initial │ -Bound │ +Bound │ At Limit? │
├───────╫──────────────┼──────────────╫──────────────┼──────────────┼──────────────┼───────────┤
│ 0 ║ +1.001E0 │ +8.461E-1 ║ +2.000E0 │ -inf │ +inf │ │
│ 1 ║ +1.003E0 │ +1.695E0 ║ +2.000E0 │ -inf │ +inf │ │
└───────╨──────────────┴──────────────╨──────────────┴──────────────┴──────────────┴───────────┘
All minimizers in ganesh
have access to a feature which allows algorithms which usually function in unbounded parameter spaces to only return results inside a bounding box. This is done via a parameter transformation, the same one used by LMFIT
and MINUIT
. This transform is not enacted on algorithms which already have bounded implementations, like L-BFGS-B
. While the user inputs parameters within the bounds, unbounded algorithms can (and in practice will) convert those values to a set of unbounded "internal" parameters. When functions are called, however, these internal parameters are converted back into bounded "external" parameters, via the following transformations:
Upper and lower bounds:
x_\text{int} = \arcsin\left(2\frac{x_\text{ext} - x_\text{min}}{x_\text{max} - x_\text{min}} - 1\right)
x_\text{ext} = x_\text{min} + \left(\sin(x_\text{int}) + 1\right)\frac{x_\text{max} - x_\text{min}}{2}
Upper bound only:
x_\text{int} = \sqrt{(x_\text{max} - x_\text{ext} + 1)^2 - 1}
x_\text{ext} = x_\text{max} + 1 - \sqrt{x_\text{int}^2 + 1}
Lower bound only:
x_\text{int} = \sqrt{(x_\text{ext} - x_\text{min} + 1)^2 - 1}
x_\text{ext} = x_\text{min} - 1 + \sqrt{x_\text{int}^2 + 1}
As noted in the documentation for both LMFIT
and MINUIT
, these bounds should be used with caution. They turn linear problems into nonlinear ones, which can mess with error propagation and even fit convergence, not to mention increase function complexity. Methods which output covariance matrices need to be adjusted if bounded, and MINUIT
recommends fitting a second time near a minimum without bounds to ensure proper error propagation.