| Crates.io | geometric-langlands |
| lib.rs | geometric-langlands |
| version | 0.2.2 |
| created_at | 2025-07-19 13:20:48.403138+00 |
| updated_at | 2025-07-19 16:01:35.239316+00 |
| description | A comprehensive computational framework for the Geometric Langlands Conjecture with neural-symbolic integration, CLI tools, WASM deployment, and CUDA acceleration |
| homepage | https://github.com/ruvnet/ruv-FANN/tree/main/geometric_langlands_conjecture |
| repository | https://github.com/ruvnet/ruv-FANN |
| max_upload_size | |
| id | 1760250 |
| size | 1,003,543 |
This project implements the Geometric Langlands Conjecture using Rust, WASM, and CUDA, providing a high-performance computational framework for exploring this profound mathematical correspondence.
The Geometric Langlands program establishes a correspondence between:
This duality connects:
core/ - Fundamental mathematical structures
automorphic/ - Automorphic forms and representations
galois/ - Galois representations
category/ - Categorical structures
sheaf/ - Sheaf theory
representation/ - Representation theory
harmonic/ - Harmonic analysis
spectral/ - Spectral theory
trace/ - Trace formulas
langlands/ - Main correspondence implementation
wasm/ - WebAssembly bindings for browser/edge computingcuda/ - CUDA kernels for GPU accelerationutils/ - Utilities and helper functionsbenchmarks/ - Performance benchmarking suite# Add to your Cargo.toml
[dependencies]
geometric-langlands = "0.2.0"
# Install the CLI tool globally
cargo install geometric-langlands-cli
# Use the CLI
langlands --help
langlands compute --computation-type correspondence --input "GL(3)" --output results.json
langlands visual --object-type hecke-eigenvalues --output chart.svg
# Clone the repository
git clone https://github.com/ruvnet/ruv-FANN.git
cd ruv-FANN/geometric_langlands_conjecture
# Build the project
cargo build --release --all-features
# Run tests
cargo test
# Run benchmarks
cargo bench
# Install CUDA Toolkit 12.0+
# Set CUDA_PATH environment variable
export CUDA_PATH=/usr/local/cuda
# Build with CUDA support
cargo build --release --features cuda
# Install wasm-pack
curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh
# Build WASM module
wasm-pack build --target web --features wasm
The geometric-langlands-cli provides an intuitive interface for mathematical computations:
# Verify Langlands correspondence for GL(3)
langlands verify --property correspondence --input "GL(3)" --depth standard
# Compute Hecke eigenvalues and visualize
langlands compute --computation-type hecke --input "level=5,weight=12" --output eigenvalues.json
langlands visual --object-type hecke-eigenvalues --input eigenvalues.json --output chart.svg
# Interactive REPL for exploration
langlands repl --auto-save
# Train neural networks on automorphic patterns
langlands train --epochs 100 --batch-size 32 --architecture langlands_v1
# Export results to various formats
langlands export --format latex --metadata --output paper.tex
langlands export --format python --output analysis.py
use geometric_langlands::automorphic::{AutomorphicForm, HeckeOperator};
use geometric_langlands::core::ReductiveGroup;
let g = ReductiveGroup::gl_n(3);
let form = AutomorphicForm::eisenstein_series(&g, 2);
let hecke = HeckeOperator::new(&g, 5);
let eigenform = hecke.apply(&form);
use geometric_langlands::galois::{GaloisRep, LocalSystem};
use geometric_langlands::core::Curve;
let curve = Curve::elliptic_curve([1, 0, 1, -1, 0]);
let galois_rep = GaloisRep::from_curve(&curve);
let local_system = LocalSystem::from_galois_rep(&galois_rep);
use geometric_langlands::cuda::CudaContext;
use geometric_langlands::spectral::SpectralDecomposition;
let ctx = CudaContext::new()?;
let matrix = generate_hecke_matrix(1000);
let decomp = SpectralDecomposition::compute_cuda(&ctx, &matrix)?;
use geometric_langlands::prelude::*;
// Set up computation configuration
let config = Config::new()
.precision(64)
.parallel(true)
.cache_results(true);
// Batch computation for research
for n in 2..=10 {
let group = ReductiveGroup::gl_n(n);
let correspondence = LanglandsCorrespondence::verify(&group, &config)?;
correspondence.export_to_file(&format!("gl{}_results.json", n))?;
}
Benchmarks on NVIDIA A100 GPU:
See CONTRIBUTING.md for guidelines.
MIT License - see LICENSE file.
This implementation builds on decades of mathematical research in the Langlands program. Special thanks to all mathematicians who have contributed to this beautiful theory.