| Crates.io | geometric-langlands-cli |
| lib.rs | geometric-langlands-cli |
| version | 0.2.0 |
| created_at | 2025-07-19 15:38:34.069212+00 |
| updated_at | 2025-07-19 15:38:34.069212+00 |
| description | User-friendly CLI for the Geometric Langlands computational framework |
| homepage | https://github.com/ruvnet/ruv-FANN/tree/main/geometric_langlands_conjecture |
| repository | https://github.com/ruvnet/ruv-FANN |
| max_upload_size | |
| id | 1760331 |
| size | 205,971 |
A user-friendly command-line interface for the Geometric Langlands computational framework, making advanced mathematical computations accessible to researchers and mathematicians.
# Install from source
git clone https://github.com/ruvnet/ruv-FANN.git
cd ruv-FANN/geometric_langlands_conjecture/geometric-langlands-cli
cargo install --path .
langlands repl
# Verify Langlands correspondence
langlands compute correspondence --input "GL(3)" --output results.json
# Compute Hecke eigenvalues
langlands compute hecke --input "GL(2)" --parallel
# Evaluate L-functions
langlands compute l-function --input "eisenstein" --output l_values.csv
# Visualize Hecke eigenvalues
langlands visual hecke-eigenvalues --interactive --resolution 1920x1080
# Plot L-function
langlands visual l-function --output l_function.png
# Visualize moduli space
langlands visual moduli-space --interactive
# Train on correspondence patterns
langlands train --dataset training_data.json --epochs 100 --save-model model.bin
# Use custom architecture
langlands train --dataset data.json --architecture deep --learning-rate 0.001
# Verify Ramanujan conjecture
langlands verify ramanujan --input "GL(2)" --depth deep --proof
# Check functoriality
langlands verify functoriality --input "GL(2)->GL(3)" --proof
# Verify reciprocity laws
langlands verify reciprocity --depth exhaustive
# Export to LaTeX
langlands export recent --format latex --output paper.tex --metadata
# Export to Mathematica
langlands export computation_id --format mathematica --output notebook.nb
# Export to Python
langlands export all --format python --output analysis.py
langlands compute <type> - Run mathematical computationslanglands visual <type> - Create visualizationslanglands train - Train neural networkslanglands verify <property> - Verify mathematical propertieslanglands export <source> - Export results in various formatslanglands repl - Start interactive sessioncorrespondence - Langlands correspondence verificationhecke - Hecke operator eigenvaluesl-function - L-function evaluationstrace-formula - Trace formula computationsspectral - Spectral decompositionfunctoriality - Functorial liftsramanujan - Ramanujan conjecture verificationsheaf - Perverse sheaf structurerepresentation - Galois representationsmoduli-space - Moduli space of bundlesspectral-curve - Spectral curveshecke-eigenvalues - Hecke eigenvalue plotsl-function - L-function plotscorrespondence - Langlands correspondence diagramcorrespondence - Langlands correspondencefunctoriality - Functorial propertiesreciprocity - Reciprocity lawsramanujan - Ramanujan conjectureselberg - Selberg trace formulariemann-hypothesis - Generalized Riemann hypothesislocal-global - Local-global principle# Initialize database
langlands db init
# List stored computations
langlands db list --limit 20
# Show computation details
langlands db show <computation_id>
# Export/import database
langlands db export database_backup.json
langlands db import database_backup.json
# Show current configuration
langlands config show
# Set configuration values
langlands config set neural.learning_rate 0.001
langlands config set visualization.default_resolution 1920x1080
# Reset to defaults
langlands config reset
The REPL provides an interactive environment for mathematical exploration:
langlands> create group g GL 3
Created group g: GL(3)
langlands> create form f g 2
Created automorphic form f: Eisenstein series of weight 2
langlands> compute correspondence
Langlands correspondence: computed ✓
Verified: ✓
langlands> compute hecke 5
T_5(f) = 2.236068
langlands> plot hecke
Plot opened in viewer
langlands> verify ramanujan
Ramanujan conjecture at p=2: ✓
langlands> save session.json
Session saved to: session.json
help - Show help messagevars - List all variablescreate <type> <name> [args] - Create mathematical objectscompute <operation> - Perform computationsplot <type> - Generate plotsverify <property> - Verify propertiessave/load <file> - Session managementConfiguration is stored in ~/.config/langlands-cli/config.toml:
default_precision = 64
max_iterations = 10000
convergence_threshold = 1e-10
[computation]
enable_parallel = true
enable_gpu = false
cache_results = true
[visualization]
default_resolution = [800, 600]
color_scheme = "viridis"
enable_latex = true
[neural]
default_architecture = "langlands_v1"
learning_rate = 0.001
batch_size = 32
[repl]
history_size = 1000
auto_save = true
prompt = "langlands> "
{
"computation": {
"type": "correspondence",
"verified": true,
"details": "..."
},
"metadata": {
"version": "0.1.0",
"timestamp": "2024-01-01T00:00:00Z"
}
}
\documentclass{article}
\begin{document}
\section{Langlands Correspondence}
The correspondence between automorphic forms and Galois representations...
\begin{align}
L(s) &= 1.234567
\end{align}
\end{document}
correspondence = {
"type" -> "Langlands",
"verified" -> True,
"lFunction" -> LFunction[s]
};
# 1. Set up computation
langlands config set computation.enable_parallel true
langlands config set neural.batch_size 64
# 2. Verify correspondences for GL(n)
for n in 2 3 4; do
langlands compute correspondence --input "GL($n)" --output "gl${n}_results.json"
done
# 3. Train neural network on patterns
langlands train --dataset combined_data.json --architecture deep --epochs 200
# 4. Generate visualizations
langlands visual correspondence --output correspondence_diagram.svg
langlands visual hecke-eigenvalues --resolution 2560x1440 --output eigenvalues.png
# 5. Export for publication
langlands export recent --format latex --metadata --output paper.tex
#!/bin/bash
# Batch verify multiple properties
properties=("correspondence" "functoriality" "ramanujan" "reciprocity")
for prop in "${properties[@]}"; do
echo "Verifying $prop..."
langlands verify "$prop" --depth standard --proof > "${prop}_verification.txt"
done
# Generate summary report
langlands export all --format json --output verification_summary.json
The CLI is optimized for mathematical computations:
We welcome contributions! Please see the main repository's contributing guidelines.
MIT License - see LICENSE file for details.
If you use this tool in your research, please cite:
@software{geometric_langlands_cli,
title = {Geometric Langlands CLI},
author = {ruv-FANN Contributors},
url = {https://github.com/ruvnet/ruv-FANN},
version = {0.1.0},
year = {2024}
}