greeners

Crates.iogreeners
lib.rsgreeners
version1.3.2
created_at2025-12-24 21:24:21.211973+00
updated_at2026-01-01 04:20:43.689582+00
descriptionHigh-performance econometrics with R/Python formulas. Two-Way Clustering, Marginal Effects (AME/MEM), HC1-4, IV Predictions, Categorical C(var), Polynomial I(x^2), Interactions, Diagnostics. OLS, IV/2SLS, DiD, Logit/Probit, Panel (FE/RE), Time Series (VAR/VECM), Quantile!
homepage
repositoryhttps://github.com/sheep-farm/Greeners
max_upload_size
id2003869
size1,549,325
Flavio de Vasconcellos Correa (sheep-farm)

documentation

README

Greeners: High-Performance Econometrics in Rust

Build Status Version License Stability

Greeners is a lightning-fast, type-safe econometrics library written in pure Rust. It provides a comprehensive suite of estimators for Cross-Sectional, Time-Series, and Panel Data analysis, leveraging linear algebra backends (LAPACK/BLAS) for maximum performance.

Designed for academic research, heavy simulations, and production-grade economic modeling.

πŸŽ‰ v1.3.2 RELEASE: Flexible Statistical Inference (t vs z)

Greeners v1.3.2 adds flexible statistical inference, allowing users to choose between Student's t-distribution and Normal (z) distribution for hypothesis testing - bringing statsmodels-compatible inference while maintaining exact finite-sample theory!

πŸ†• What's New in v1.3.2

  1. 🌟 InferenceType Support - Choose between StudentT (default, exact) and Normal (asymptotic, statsmodels-compatible)
  2. 🌟 Non-Breaking API - Simple .with_inference() method on all linear models
  3. Dynamic Display - Tables automatically show "t" or "z" based on inference type
  4. Full Coverage - OLS, IV/2SLS, Fixed Effects, Random Effects, Between Estimator
  5. Bug Fix - Panel models now correctly recalculate p-values with adjusted degrees of freedom

Quick Example

use greeners::{OLS, CovarianceType, InferenceType};

// Default: Student's t (exact finite-sample)
let result = OLS::fit(&y, &x, CovarianceType::HC1)?;
println!("{}", result); // Shows "t | P>|t|"

// Switch to Normal/z (large-sample asymptotics, like statsmodels)
let result_z = result.with_inference(InferenceType::Normal)?;
println!("{}", result_z); // Shows "z | P>|z|"

When to use each:

  • StudentT (default): Small/medium samples (n < 100), exact inference, conservative
  • Normal: Large samples (n > 1000), compatibility with Python/statsmodels, asymptotic theory

πŸŽ‰ v1.3.1 ENHANCED RELEASE: Intelligent Type Detection + Automatic Collinearity Handling

Greeners v1.3.1 enhances the automatic type detection system with smart Int vs Float distinction, DateTime support, revolutionary Binary Boolean Detection, and adds Stata-like automatic collinearity detection across ALL models!

πŸ†• What's New in v1.3.1

  1. 🌟 Binary Boolean Detection - UNIQUE TO GREENERS! Any column with 2 unique values β†’ Bool (works in ANY language: ['casado', 'solteiro'], ['M', 'F'], etc.)
  2. 🌟 Automatic Collinearity Detection - 100% MODEL COVERAGE! All 11 models automatically detect and handle perfect collinearity, just like Stata
  3. Improved Int vs Float Detection - Now correctly distinguishes 1 from 1.0 and 1.5
  4. Automatic DateTime Detection - ISO-8601 format timestamps are auto-detected
  5. Enhanced Boolean Detection - Supports 1/0, yes/no, true/false, t/f variants
  6. Configurable Thresholds - Internal configuration for Categorical vs String detection

Why Binary Boolean Detection is Revolutionary: Unlike pandas, R, polars, or Stata which require manual conversion of binary variables (married/single, male/female, treated/control), Greeners automatically recognizes and converts them - saving you from repetitive data preprocessing and potential errors!

πŸŽ‰ v1.3.0 MAJOR FEATURE RELEASE: Complete Data Handling & Time Series

Greeners v1.3.0 brings pandas-like DataFrame capabilities and essential time series operations for econometric analysis - all while maintaining 100% backward compatibility with v1.0.2!

πŸ†• Three Major Feature Sets (NEW in v1.3.0)

1. String Column Support

Store free-form text data alongside numerical columns:

use greeners::DataFrame;

let customers = DataFrame::builder()
    .add_int("id", vec![1, 2, 3])
    .add_string("name", vec![
        "Alice Johnson".to_string(),
        "Bob Smith".to_string(),
        "Charlie Brown".to_string(),
    ])
    .add_string("email", vec![
        "alice@example.com".to_string(),
        "bob@example.com".to_string(),
        "charlie@example.com".to_string(),
    ])
    .add_column("purchase_amount", vec![150.0, 200.0, 75.0])
    .build()?;

// Access string data
let names = customers.get_string("name")?;
println!("First customer: {}", names[0]); // "Alice Johnson"

String vs Categorical:

  • String columns: Free text, unique values (names, emails, addresses, comments)
  • Categorical columns: Repeated categories, encoded as integers (regions, groups)

πŸ“– See examples/string_features.rs for comprehensive demonstration.

2. Missing Data & Null Support

Complete toolkit for handling missing values - just like pandas!

use greeners::DataFrame;

// Detect missing values
let mask = df.isna("temperature")?;  // Boolean mask
let n_missing = df.count_na("temperature");  // Count

// Remove missing data
let clean = df.dropna()?;  // Drop any row with NaN
let clean_subset = df.dropna_subset(&["price", "quantity"])?;  // Drop if specific cols missing

// Fill missing values
let filled = df.fillna("price", 100.0)?;  // Fill with constant
let forward = df.fillna_ffill("price")?;  // Forward fill (carry last valid)
let backward = df.fillna_bfill("price")?;  // Backward fill (carry next valid)
let smooth = df.interpolate("temperature")?;  // Linear interpolation

Comprehensive workflow:

  • Detect: isna(), notna(), count_na() for investigation
  • Handle: dropna() for complete-case analysis
  • Impute: fillna(), ffill(), bfill(), interpolate() for treatment

πŸ“– See examples/missing_data_features.rs for complete workflow.

3. Time Series Operations

Essential operations for econometric time series analysis:

use greeners::DataFrame;

// Stock price data
let df = DataFrame::builder()
    .add_column("date", vec![1.0, 2.0, 3.0, 4.0, 5.0])
    .add_column("price", vec![100.0, 102.0, 101.0, 105.0, 103.0])
    .build()?;

// Lag operator - create lagged variables
let with_lag = df.lag("price", 1)?;  // Previous day's price β†’ price_lag_1
// Essential for AR models: y_t = Ξ²β‚€ + β₁·y_{t-1} + Ξ΅_t

// Lead operator - forward-looking variables
let with_lead = df.lead("price", 1)?;  // Next day's price β†’ price_lead_1
// Essential for lead-lag analysis and Granger causality

// First differences - achieve stationarity
let stationary = df.diff("price", 1)?;  // Ξ”price_t = price_t - price_{t-1} β†’ price_diff_1
// Essential for unit root tests and I(1) processes

// Percentage changes - returns calculation
let returns = df.pct_change("price", 1)?;  // (price_t - price_{t-1}) / price_{t-1} β†’ price_pct_1
// Standard in finance for asset returns

// Chain operations for complete analysis
let analysis = df
    .lag("price", 1)?
    .diff("price", 1)?
    .pct_change("price", 1)?;
// Creates: price_lag_1, price_diff_1, price_pct_1

Use cases:

  • Finance: Returns (pct_change), momentum strategies
  • Econometrics: AR models (lag), stationarity testing (diff), GDP growth
  • Machine Learning: Time series feature engineering (multiple lags)

Mathematical relationships:

  • lag(x, n)[t] = x[t-n]
  • lead(x, n)[t] = x[t+n]
  • diff(x, n)[t] = x[t] - x[t-n]
  • pct_change(x, n)[t] = (x[t] - x[t-n]) / x[t-n]

πŸ“– See examples/time_series_features.rs for 11 practical examples.

Why v1.3.0 Matters

Before v1.3.0:

  • Greeners = Powerful econometric estimators + basic DataFrame
  • Missing data? Manual handling required
  • Time series? Use shift() and manual calculations
  • Text data? Not supported

Now v1.3.0:

  • Greeners = Complete data analysis platform with pandas-like capabilities
  • String columns βœ… Missing data toolkit βœ… Time series ops βœ…
  • Full workflow: Load β†’ Clean β†’ Transform β†’ Model β†’ Predict
  • Only Rust library with comprehensive econometrics + DataFrame
  • 100% backward compatible - all v1.0.2 code works unchanged!

Migration from v1.0.2

100% backward compatible - zero breaking changes!

All v1.0.2 code works unchanged. New capabilities are purely additive:

// Your existing v1.0.2 code
let df = DataFrame::from_csv("data.csv")?;
let formula = Formula::parse("y ~ x1 + x2")?;
let result = OLS::from_formula(&formula, &df, CovarianceType::HC3)?;
// βœ… Still works perfectly!

// New v1.3.0 capabilities (additive)
let df_with_strings = df.add_string("region", regions)?;  // NEW
let clean_df = df.dropna()?;  // NEW
let with_lags = df.lag("y", 1)?;  // NEW

🎊 v1.0.2 STABLE RELEASE: Named Variables & Enhanced Data Loading

Greeners v1.0.2 brings human-readable variable names in regression output and flexible data loading from multiple sources!

πŸ†• Multiple Data Loading Options (NEW in v1.0.2)

Load data from CSV, JSON, URLs, or use the Builder pattern - just like pandas/polars!

// 1. CSV from URL (reproducible research!)
let df = DataFrame::from_csv_url(
    "https://raw.githubusercontent.com/datasets/gdp/master/data/gdp.csv"
)?;

// 2. JSON from local file (column or record oriented)
let df = DataFrame::from_json("data.json")?;

// 3. JSON from URL (API integration)
let df = DataFrame::from_json_url("https://api.example.com/data.json")?;

// 4. Builder pattern (most convenient!)
let df = DataFrame::builder()
    .add_column("wage", vec![30000.0, 40000.0, 50000.0])
    .add_column("education", vec![12.0, 16.0, 18.0])
    .build()?;

// 5. CSV from local file (classic)
let df = DataFrame::from_csv("data.csv")?;

Why this matters:

  • βœ… Reproducible research - Load datasets directly from GitHub/URLs
  • βœ… API integration - Fetch data from web services
  • βœ… Flexible formats - CSV, JSON (column/record oriented)
  • βœ… Pandas-like - Familiar syntax for data scientists
  • βœ… Type-safe - All data loading is checked at compile time

πŸ“– See examples/dataframe_loading.rs for all loading methods.

Named Variables in Results (NEW in v1.0.2)

No more generic x0, x1, x2 in regression output! All models now display actual variable names from your Formula:

use greeners::{OLS, DataFrame, Formula, CovarianceType};

let formula = Formula::parse("wage ~ education + experience + female")?;
let result = OLS::from_formula(&formula, &df, CovarianceType::HC3)?;

println!("{}", result);

Before (v1.0.1):

OLS Regression Results
====================================
Variable    Coef    Std Err    t    P>|t|
const       5.23    0.45      11.62  0.000
x0          2.15    0.12       17.92  0.000    <- Generic names
x1          0.08    0.02        4.00  0.000
x2         -1.20    0.25       -4.80  0.000

Now (v1.0.2):

OLS Regression Results
====================================
Variable      Coef    Std Err    t    P>|t|
const         5.23    0.45      11.62  0.000
education     2.15    0.12       17.92  0.000    <- Actual variable names!
experience    0.08    0.02        4.00  0.000
female       -1.20    0.25       -4.80  0.000

Applies to ALL models:

  • βœ… OLS, WLS, Cochrane-Orcutt (FGLS)
  • βœ… IV/2SLS (Instrumental Variables)
  • βœ… Logit/Probit (Binary Choice)
  • βœ… Quantile Regression (all quantiles)
  • βœ… Panel Data (Fixed Effects, Random Effects, Between)
  • βœ… GMM (Generalized Method of Moments)
  • βœ… Difference-in-Differences

Comprehensive Test Coverage

v1.3.0 includes 102 unit tests covering all major functionality:

  • 17 new tests added in v1.3.0 for time series operations
  • Full coverage of OLS, IV/2SLS, Panel Data, DiD, FGLS, Quantile Regression
  • String columns, Missing data, Time series operations
  • Diagnostic tests (VIF, Breusch-Pagan, Jarque-Bera, Durbin-Watson)
  • GMM specification tests (J-statistic, overidentification)
  • Model selection and information criteria

Run tests locally:

cargo test              # Run all 102 tests
cargo test --lib        # Library tests only
cargo test dataframe    # DataFrame-specific tests

Code Quality Improvements

  • Applied clippy lints for idiomatic Rust (25+ improvements)
  • Replaced .iter().cloned().collect() with .to_vec() for better performance
  • Modern range checks using .contains() instead of manual comparisons
  • Cleaner, more maintainable codebase

πŸŽ‰ v1.0.1: Specification Tests

Greeners reaches production stability with comprehensive specification tests for diagnosing regression assumptions!

Specification Tests (NEW in v1.0.1)

Diagnose violations of classical regression assumptions and identify appropriate remedies:

use greeners::{OLS, SpecificationTests, Formula, DataFrame, CovarianceType};

// Estimate model
let model = OLS::from_formula(&Formula::parse("wage ~ education + experience")?, &df, CovarianceType::NonRobust)?;
let (y, x) = df.to_design_matrix(&formula)?;
let residuals = model.residuals(&y, &x);
let fitted = model.fitted_values(&x);

// 1. White Test for Heteroskedasticity
let (lm_stat, p_value, df) = SpecificationTests::white_test(&residuals, &x)?;
if p_value < 0.05 {
    println!("Heteroskedasticity detected! Use CovarianceType::HC3");
}

// 2. RESET Test for Functional Form Misspecification
let (f_stat, p_value, _, _) = SpecificationTests::reset_test(&y, &x, &fitted, 3)?;
if p_value < 0.05 {
    println!("Misspecification detected! Add polynomials or interactions");
}

// 3. Breusch-Godfrey Test for Autocorrelation
let (lm_stat, p_value, df) = SpecificationTests::breusch_godfrey_test(&residuals, &x, 1)?;
if p_value < 0.05 {
    println!("Autocorrelation detected! Use CovarianceType::NeweyWest(4)");
}

// 4. Goldfeld-Quandt Test for Heteroskedasticity
let (f_stat, p_value, _, _) = SpecificationTests::goldfeld_quandt_test(&residuals, 0.25)?;

When to Use:

  • White Test β†’ General heteroskedasticity test (any form)
  • RESET Test β†’ Detect omitted variables or wrong functional form
  • Breusch-Godfrey β†’ Detect autocorrelation in time series/panel data
  • Goldfeld-Quandt β†’ Test heteroskedasticity when you suspect specific ordering

Remedies:

  • Heteroskedasticity β†’ CovarianceType::HC3 or HC4
  • Autocorrelation β†’ CovarianceType::NeweyWest(lags)
  • Misspecification β†’ Add I(x^2), x1*x2 interactions

Stata/R/Python Equivalents:

  • Stata: estat hettest, estat ovtest, estat bgodfrey
  • R: lmtest::bptest(), lmtest::resettest(), lmtest::bgtest()
  • Python: statsmodels.stats.diagnostic.het_white()

πŸ“– See examples/specification_tests.rs for comprehensive demonstration.

✨ NEW: R/Python-Style Formula API

Greeners now supports R/Python-style formula syntax (like statsmodels and lm()), making model specification intuitive and concise:

use greeners::{OLS, DataFrame, Formula, CovarianceType};

// Python equivalent: smf.ols('y ~ x1 + x2', data=df).fit(cov_type='HC1')
let formula = Formula::parse("y ~ x1 + x2")?;
let result = OLS::from_formula(&formula, &df, CovarianceType::HC1)?;

All estimators support formulas: OLS, WLS, DiD, IV/2SLS, Logit/Probit, Quantile Regression, Panel Data (FE/RE/Between), and more!

πŸ“– See FORMULA_API.md for complete documentation and examples.

πŸš€ Panel Diagnostics & Model Selection

Greeners now provides comprehensive tools for panel data model selection and information criteria-based model comparison - essential for rigorous empirical research!

Model Selection & Comparison

Compare multiple models using AIC/BIC with automatic ranking and Akaike weights for model averaging:

use greeners::{OLS, ModelSelection, DataFrame, Formula, CovarianceType};

// Estimate competing models
let model1 = OLS::from_formula(&Formula::parse("y ~ x1 + x2 + x3")?, &df, CovarianceType::NonRobust)?;
let model2 = OLS::from_formula(&Formula::parse("y ~ x1 + x2")?, &df, CovarianceType::NonRobust)?;
let model3 = OLS::from_formula(&Formula::parse("y ~ x1")?, &df, CovarianceType::NonRobust)?;

// Compare models
let models = vec![
    ("Full Model", model1.log_likelihood, 4, n_obs),
    ("Restricted", model2.log_likelihood, 3, n_obs),
    ("Simple", model3.log_likelihood, 2, n_obs),
];
let comparison = ModelSelection::compare_models(models);
ModelSelection::print_comparison(&comparison);

// Calculate Akaike weights for model averaging
let aic_values: Vec<f64> = comparison.iter().map(|(_, aic, _, _, _)| *aic).collect();
let (delta_aic, weights) = ModelSelection::akaike_weights(&aic_values);

Output:

=============================== Model Comparison ===============================
Model                |          AIC |          BIC | Rank(AIC) | Rank(BIC)
--------------------------------------------------------------------------------
Full Model           |       183.83 |       191.48 |        1 |        1
Restricted           |       184.77 |       190.50 |        2 |        2
Simple               |       188.19 |       192.01 |        3 |        3

πŸ“Š AKAIKE WEIGHTS:
Ξ”_AIC < 2: Substantial support
Ξ”_AIC 4-7: Considerably less support
Ξ”_AIC > 10: Essentially no support

Panel Diagnostics Tests

Test whether pooled OLS is appropriate or if panel data methods (Fixed/Random Effects) are needed:

Breusch-Pagan LM Test for Random Effects

use greeners::{PanelDiagnostics, OLS, Formula};

// Estimate pooled OLS
let model_pooled = OLS::from_formula(&formula, &df, CovarianceType::NonRobust)?;
let (y, x) = df.to_design_matrix(&formula)?;
let residuals = model_pooled.residuals(&y, &x);

// Test for random effects
let (lm_stat, p_value) = PanelDiagnostics::breusch_pagan_lm(&residuals, &firm_ids)?;

// Interpretation:
// Hβ‚€: σ²_u = 0 (no panel effects, pooled OLS adequate)
// H₁: σ²_u > 0 (random effects needed)
// If p < 0.05 β†’ Use Random Effects or Fixed Effects

F-Test for Fixed Effects

// Test if firm fixed effects are significant
let (f_stat, p_value) = PanelDiagnostics::f_test_fixed_effects(
    ssr_pooled,
    ssr_fe,
    n_obs,
    n_firms,
    k_params,
)?;

// Interpretation:
// Hβ‚€: All firm effects are zero (pooled OLS adequate)
// H₁: Firm effects exist (use fixed effects)
// If p < 0.05 β†’ Use Fixed Effects model

Summary Statistics

Quick descriptive statistics for initial data exploration:

use greeners::SummaryStats;

let stats = SummaryStats::describe(&data);
// Returns: (mean, std, min, Q25, median, Q75, max, n_obs)

// Pretty-print summary table
let summary_data = vec![
    ("investment", stats_inv),
    ("profit", stats_profit),
    ("cash_flow", stats_cf),
];
SummaryStats::print_summary(&summary_data);

Stata/R/Python Equivalents:

  • Stata: estat ic (AIC/BIC), xttest0 (BP LM), testparm (F-test)
  • R: AIC(), BIC(), plm::plmtest(), plm::pFtest()
  • Python: statsmodels information criteria, linearmodels.panel diagnostics

πŸ“– See examples/panel_model_selection.rs for comprehensive demonstration with panel data workflow.

🌟 Marginal Effects for Binary Choice Models

After estimating Logit/Probit models, coefficients alone are hard to interpret (they're on log-odds/z-score scale). Marginal effects translate these to probability changes - essential for policy analysis and substantive interpretation!

Average Marginal Effects (AME) - RECOMMENDED

use greeners::{Logit, Formula, DataFrame};

// Estimate Logit model
let formula = Formula::parse("admitted ~ gpa + sat + legacy")?;
let result = Logit::from_formula(&formula, &df)?;

// Get design matrix
let (_, x) = df.to_design_matrix(&formula)?;

// Calculate Average Marginal Effects (AME)
let ame = result.average_marginal_effects(&x)?;

// Interpretation: AME[gpa] = 0.15 means:
// "A 1-point increase in GPA increases admission probability by 15 percentage points"
// (averaged across all students in the sample)

Why AME?

  • βœ… Accounts for heterogeneity across observations
  • βœ… More robust to non-linearities
  • βœ… Standard in modern econometrics (Stata, R, Python)
  • βœ… Easy to interpret: probability changes, not log-odds

Marginal Effects at Means (MEM)

// Calculate Marginal Effects at Means (MEM)
let mem = result.marginal_effects_at_means(&x)?;

// Interpretation: Effect for "average" student
// ⚠️ Less robust than AME - can evaluate at impossible values (e.g., average of dummies)

Predictions

// Predict admission probabilities for new students
let probs = result.predict_proba(&x_new);

// Example: probs[0] = 0.85 β†’ 85% chance of admission

Logit vs Probit Comparison

// Both models give similar marginal effects
let logit_result = Logit::from_formula(&formula, &df)?;
let probit_result = Probit::from_formula(&formula, &df)?;

let ame_logit = logit_result.average_marginal_effects(&x)?;
let ame_probit = probit_result.average_marginal_effects(&x)?;

// Typically: ame_logit β‰ˆ ame_probit (differences < 1-2 percentage points)

Stata/R/Python Equivalents:

  • Stata: margins, dydx(*) (AME) or margins, dydx(*) atmeans (MEM)
  • R: mfx::logitmfx() or margins::margins()
  • Python: statsmodels.discrete.discrete_model.Logit(...).get_margeff()

πŸ“– See examples/marginal_effects.rs for comprehensive demonstration with college admission data.

Two-Way Clustered Standard Errors

For panel data with clustering along two dimensions (e.g., firms Γ— time):

// Panel data: 4 firms Γ— 6 time periods
let firm_ids = vec![0,0,0,0,0,0, 1,1,1,1,1,1, 2,2,2,2,2,2, 3,3,3,3,3,3];
let time_ids = vec![0,1,2,3,4,5, 0,1,2,3,4,5, 0,1,2,3,4,5, 0,1,2,3,4,5];

// Two-way clustering (Cameron-Gelbach-Miller, 2011)
let result = OLS::from_formula(
    &formula,
    &df,
    CovarianceType::ClusteredTwoWay(firm_ids, time_ids)
)?;

// Formula: V = V_firm + V_time - V_intersection
// Accounts for BOTH within-firm AND within-time correlation

When to use:

  • βœ… Panel data (firms/countries over time)
  • βœ… Correlation within entities AND within time periods
  • βœ… More robust than one-way clustering
  • βœ… Standard in modern panel data econometrics

Stata equivalent: reghdfe y x, vce(cluster firm_id time_id)

πŸ“– See examples/two_way_clustering.rs for complete comparison of non-robust vs one-way vs two-way clustering.

🎊 Categorical Variables & Polynomial Terms

Categorical Variable Encoding

Automatic dummy variable creation with R/Python syntax:

// Categorical variable: creates dummies, drops first level
let formula = Formula::parse("sales ~ advertising + C(region)")?;
let result = OLS::from_formula(&formula, &df, CovarianceType::HC3)?;

// If region has values [0, 1, 2, 3] β†’ creates 3 dummies (drops 0 as reference)

How it works:

  • C(var) detects unique values in the variable
  • Creates K-1 dummy variables (drops first category as reference)
  • Essential for categorical data (regions, industries, treatment groups)

Polynomial Terms

Non-linear relationships made easy:

// Quadratic model: captures diminishing returns
let formula = Formula::parse("output ~ input + I(input^2)")?;

// Cubic model: more flexible
let formula = Formula::parse("y ~ x + I(x^2) + I(x^3)")?;

// Alternative syntax (Python-style)
let formula = Formula::parse("y ~ x + I(x**2)")?;

Use cases:

  • Production functions (diminishing returns)
  • Wage curves (experience effects)
  • Growth models (non-linear dynamics)

Combine with interactions:

// Region-specific quadratic effects
let formula = Formula::parse("sales ~ C(region) * I(advertising^2)")?;

πŸ†• Clustered Standard Errors & Advanced Diagnostics

Clustered Standard Errors

Critical for panel data and hierarchical structures where observations are grouped:

// Panel data: firms over time
let cluster_ids = vec![0,0,0, 1,1,1, 2,2,2]; // Firm IDs
let result = OLS::from_formula(&formula, &df, CovarianceType::Clustered(cluster_ids))?;

Use clustered SE when:

  • Panel data (repeated observations per entity)
  • Hierarchical data (students in schools, patients in hospitals)
  • Experimental data with treatment clusters
  • Geographic clustering (observations in regions/countries)

Advanced Diagnostics

New diagnostic tools for model validation:

use greeners::Diagnostics;

// Multicollinearity detection
let vif = Diagnostics::vif(&x)?;              // Variance Inflation Factor
let cond_num = Diagnostics::condition_number(&x)?;  // Condition Number

// Influential observations
let leverage = Diagnostics::leverage(&x)?;    // Hat values
let cooks_d = Diagnostics::cooks_distance(&residuals, &x, mse)?;  // Cook's Distance

// Assumption testing (already available)
let (jb_stat, jb_p) = Diagnostics::jarque_bera(&residuals)?;  // Normality
let (bp_stat, bp_p) = Diagnostics::breusch_pagan(&residuals, &x)?;  // Heteroskedasticity
let dw_stat = Diagnostics::durbin_watson(&residuals);  // Autocorrelation

πŸŽ‰ Interactions, HC2/HC3, and Predictions

Interaction Terms

Model interaction effects with R/Python syntax:

// Full interaction: x1 * x2 expands to x1 + x2 + x1:x2
let formula = Formula::parse("wage ~ education * female")?;
let result = OLS::from_formula(&formula, &df, CovarianceType::HC3)?;

// Interaction only: just the product term
let formula2 = Formula::parse("wage ~ education + female + education:female")?;

Use cases:

  • Differential effects by groups (e.g., education returns by gender)
  • Treatment effect heterogeneity
  • Testing moderation/mediation hypotheses

Enhanced Robust Standard Errors

// HC2: Leverage-adjusted (more efficient with small samples)
let result_hc2 = OLS::from_formula(&formula, &df, CovarianceType::HC2)?;

// HC3: Jackknife (most robust - RECOMMENDED for small samples)
let result_hc3 = OLS::from_formula(&formula, &df, CovarianceType::HC3)?;

Comparison:

  • HC1: White (1980), uses n/(n-k) correction
  • HC2: Adjusts for leverage: σ²/(1-h_i)
  • HC3: Jackknife: σ²/(1-h_i)Β² - Most conservative & robust

Post-Estimation Predictions

// Out-of-sample predictions
let x_new = Array2::from_shape_vec((3, 2), vec![1.0, 12.0, 1.0, 16.0, 1.0, 20.0])?;
let predictions = result.predict(&x_new);

// In-sample fitted values
let fitted = result.fitted_values(&x);

// Residuals
let resid = result.residuals(&y, &x);

πŸš€ Features

Cross-Sectional & General

  • OLS & GLS: Robust standard errors (White, Newey-West).
  • IV / 2SLS: Instrumental Variables for endogeneity correction.
  • Quantile Regression: Robust estimation via Iteratively Reweighted Least Squares (IRLS).
  • Discrete Choice: Logit and Probit models (Newton-Raphson MLE).
  • Diagnostics: R-squared, F-Test, T-Test, Confidence Intervals.

Time Series (Macroeconometrics)

  • Unit Root Tests: Augmented Dickey-Fuller (ADF).
  • VAR (Vector Autoregression): Multivariate modeling with Information Criteria (AIC/BIC).
  • VARMA: Hannan-Rissanen algorithm for ARMA structures.
  • VECM (Cointegration): Johansen Procedure (Eigenvalue decomposition) for I(1) systems.
  • Impulse Response Functions (IRF): Orthogonalized structural shocks.

Panel Data

  • Fixed Effects (Within): Absorbs individual heterogeneity.
  • Random Effects: Swamy-Arora GLS estimator.
  • Between Estimator: Long-run cross-sectional relationships.
  • Dynamic Panel: Arellano-Bond (Difference GMM) to solve Nickell Bias.
  • Panel Threshold: Hansen (1999) non-linear regime switching models.
  • Testing: Hausman Test for FE vs RE.

Systems of Equations

  • SUR: Seemingly Unrelated Regressions (Zellner).
  • 3SLS: Three-Stage Least Squares (System IV).

System Requirements (Pre-requisites)

Debian / Ubuntu / Pop!_OS:

sudo apt-get update

sudo apt-get install gfortran libopenblas-dev liblapack-dev pkg-config build-essential

Fedora / RHEL / CentOS:

sudo dnf install gcc-gfortran openblas-devel lapack-devel pkg-config

Arch Linux / Manjaro:

sudo pacman -S gcc-fortran openblas lapack base-devel

macOS:

brew install openblas lapack

πŸ” Automatic Type Detection (v1.3.1+)

Greeners automatically detects column types when loading data from CSV or JSON - including a unique feature not found in pandas, R, polars, or Stata!

🌟 Binary Boolean Detection - UNIQUE TO GREENERS!

Greeners is the only econometrics library that automatically detects any column with exactly 2 unique values as Boolean, regardless of the actual values:

// CSV with binary variables in ANY language:
// id,estado_civil,sexo,aprovado,status
// 1,casado,M,sim,ativo
// 2,solteiro,F,nΓ£o,inativo
// 3,casado,M,sim,ativo

let df = DataFrame::from_csv("survey.csv")?;

// ✨ ALL binary columns automatically detected as Bool!
let civil = df.get_bool("estado_civil")?;    // ['casado', 'solteiro'] β†’ Bool βœ“
let gender = df.get_bool("sexo")?;           // ['M', 'F'] β†’ Bool βœ“
let approved = df.get_bool("aprovado")?;     // ['sim', 'nΓ£o'] β†’ Bool βœ“
let status = df.get_bool("status")?;         // ['ativo', 'inativo'] β†’ Bool βœ“

// Mapping is alphabetical: first β†’ false, second β†’ true
// 'casado' β†’ false, 'solteiro' β†’ true
// 'F' β†’ false, 'M' β†’ true
// 'nΓ£o' β†’ false, 'sim' β†’ true

Why this matters for econometrics:

  • 🎯 Dummy variables are everywhere: married/single, employed/unemployed, treated/control
  • 🌍 Works with any language: Portuguese, Spanish, French, etc.
  • ⚑ Zero manual work: No need to create dummy variables manually
  • πŸ› No errors: Automatic consistent mapping across all analyses

How other tools handle this:

Tool Binary Detection Example
pandas ❌ Manual conversion required df['civil'] = df['civil'].map({'casado': 0, 'solteiro': 1})
R ❌ Manual conversion required df$civil <- as.numeric(df$civil == 'solteiro')
polars ❌ Manual conversion required df.with_columns(pl.col('civil').cast(pl.Boolean)) # Fails!
Stata ❌ Manual encoding required encode estado_civil, gen(civil_dummy)
Greeners βœ… AUTOMATIC! df.get_bool("estado_civil")? # Just works!

πŸ“– See examples/test_binary_bool_detection.rs for comprehensive demonstration.

Detection Priority Order

  1. Boolean - true/false, yes/no, t/f, 1/0 β†’ Bool
    • PLUS: Any 2-value column - ['casado', 'solteiro'], ['M', 'F'], etc. β†’ Bool ⭐
  2. Integer - 1, 42, -10 β†’ Int (i64)
  3. Float - 1.5, 3.14, 1.0 β†’ Float (f64) or Int if no fractional part
  4. DateTime - 2024-01-15 10:30:00, 2024-01-15T10:30:00 β†’ DateTime
  5. Categorical - Repeated string values (< 50% unique) β†’ Categorical
  6. String - Unique text values (β‰₯ 50% unique) β†’ String

Examples

// CSV with mixed types
// id,name,created_at,amount,active,region
// 1,Alice,2024-01-15 10:30:00,100.50,true,North
// 2,Bob,2024-01-16 14:45:00,200.75,false,South

let df = DataFrame::from_csv("data.csv")?;

// Automatic type detection:
let id = df.get_int("id")?;              // Int (not Float!)
let name = df.get_string("name")?;       // String (high uniqueness)
let timestamp = df.get_datetime("created_at")?; // DateTime
let amount = df.get("amount")?;          // Float (has decimals)
let active = df.get_bool("active")?;     // Bool
let region = df.get_categorical("region")?; // Categorical (repeated values)

Smart Integer Detection

// These CSV values:
// pure_int: 1, 2, 3      β†’ Int (parsed as integers)
// as_float: 1.0, 2.0     β†’ Int (no fractional part)
// decimal:  1.5, 2.7     β†’ Float (has fractional part)

DateTime Formats Supported

  • YYYY-MM-DD HH:MM:SS (e.g., 2024-01-15 10:30:00)
  • YYYY-MM-DDTHH:MM:SS (ISO-8601, e.g., 2024-01-15T10:30:00)
  • YYYY-MM-DD HH:MM:SS.fff (with milliseconds)
  • YYYY-MM-DDTHH:MM:SS.fff

πŸ“– See examples/test_improved_type_detection.rs for comprehensive examples.

πŸ“¦ Installation

Add this to your Cargo.toml:

[dependencies]
greeners = "1.3.1"
ndarray = "0.17"
# Note: You must have a BLAS/LAPACK provider installed on your system
ndarray-linalg = { version = "0.18", features = ["openblas-system"] }

🎯 Quick Start

Loading Data (Multiple Options!)

Greeners provides flexible data loading similar to pandas/polars - from local files, URLs, or manual construction:

1. CSV from Local File

use greeners::{DataFrame, Formula, OLS, CovarianceType};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Load data from CSV file with headers (just like pandas!)
    let df = DataFrame::from_csv("data.csv")?;

    // Specify model using formula
    let formula = Formula::parse("y ~ x1 + x2")?;

    // Estimate with robust standard errors
    let result = OLS::from_formula(&formula, &df, CovarianceType::HC1)?;

    println!("{}", result);
    Ok(())
}

2. CSV from URL (NEW!)

// Load data directly from GitHub or any URL
let df = DataFrame::from_csv_url(
    "https://raw.githubusercontent.com/datasets/gdp/master/data/gdp.csv"
)?;

// Perfect for reproducible research and shared datasets!

3. JSON from Local File (NEW!)

// Column-oriented JSON (like pandas.to_json(orient='columns'))
// { "x": [1.0, 2.0, 3.0], "y": [2.0, 4.0, 6.0] }
let df = DataFrame::from_json("data_columns.json")?;

// Or record-oriented JSON (like pandas.to_json(orient='records'))
// [{"x": 1.0, "y": 2.0}, {"x": 2.0, "y": 4.0}]
let df = DataFrame::from_json("data_records.json")?;

4. JSON from URL (NEW!)

// Load JSON directly from APIs or URLs
let df = DataFrame::from_json_url("https://api.example.com/data.json")?;

5. Builder Pattern (NEW!)

// Most convenient for manual data construction
let df = DataFrame::builder()
    .add_column("wage", vec![30000.0, 40000.0, 50000.0])
    .add_column("education", vec![12.0, 16.0, 18.0])
    .add_column("experience", vec![5.0, 7.0, 10.0])
    .build()?;

let formula = Formula::parse("wage ~ education + experience")?;
let result = OLS::from_formula(&formula, &df, CovarianceType::HC3)?;

Supported formats:

  • βœ… CSV (local files)
  • βœ… CSV (URLs) - requires internet connection
  • βœ… JSON (local files) - both column and record oriented
  • βœ… JSON (URLs) - perfect for API integration
  • βœ… Builder pattern - convenient manual construction
  • βœ… HashMap - traditional programmatic construction

πŸ“– See examples/dataframe_loading.rs for comprehensive demonstration of all loading methods.

Using Formula API (R/Python Style)

use greeners::{OLS, DataFrame, Formula, CovarianceType};
use ndarray::Array1;
use std::collections::HashMap;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create data manually (like a pandas DataFrame)
    let mut data = HashMap::new();
    data.insert("y".to_string(), Array1::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]));
    data.insert("x1".to_string(), Array1::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]));
    data.insert("x2".to_string(), Array1::from(vec![2.0, 2.5, 3.0, 3.5, 4.0]));

    let df = DataFrame::new(data)?;

    // Specify model using formula (just like Python/R!)
    let formula = Formula::parse("y ~ x1 + x2")?;

    // Estimate with robust standard errors
    let result = OLS::from_formula(&formula, &df, CovarianceType::HC1)?;

    println!("{}", result);
    Ok(())
}

Traditional Matrix API

use greeners::{OLS, CovarianceType};
use ndarray::{Array1, Array2};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let y = Array1::from(vec![1.0, 2.0, 3.0, 4.0, 5.0]);
    let x = Array2::from_shape_vec((5, 2), vec![
        1.0, 2.0,
        2.0, 2.5,
        3.0, 3.0,
        4.0, 3.5,
        5.0, 4.0,
    ])?;

    let result = OLS::fit(&y, &x, CovarianceType::HC1)?;
    println!("{}", result);
    Ok(())
}

πŸ“š Formula API Examples

Difference-in-Differences

use greeners::{DiffInDiff, DataFrame, Formula, CovarianceType};

// Python: smf.ols('outcome ~ treated + post + treated:post', data=df).fit(cov_type='HC1')
let formula = Formula::parse("outcome ~ treated + post")?;
let result = DiffInDiff::from_formula(&formula, &df, "treated", "post", CovarianceType::HC1)?;

Instrumental Variables (2SLS)

use greeners::{IV, Formula, CovarianceType};

// Endogenous equation: y ~ x1 + x_endog
// Instruments: z1, z2
let endog_formula = Formula::parse("y ~ x1 + x_endog")?;
let instrument_formula = Formula::parse("~ z1 + z2")?;
let result = IV::from_formula(&endog_formula, &instrument_formula, &df, CovarianceType::HC1)?;

Logit/Probit

use greeners::{Logit, Probit, Formula};

// Binary choice models
let formula = Formula::parse("binary_outcome ~ x1 + x2 + x3")?;
let logit_result = Logit::from_formula(&formula, &df)?;
let probit_result = Probit::from_formula(&formula, &df)?;

Panel Data (Fixed Effects)

use greeners::{FixedEffects, Formula};

let formula = Formula::parse("y ~ x1 + x2")?;
let result = FixedEffects::from_formula(&formula, &df, &entity_ids)?;

Quantile Regression

use greeners::{QuantileReg, Formula};

// Median regression
let formula = Formula::parse("y ~ x1 + x2")?;
let result = QuantileReg::from_formula(&formula, &df, 0.5, 200)?;

πŸ”§ Formula Syntax

  • Basic: y ~ x1 + x2 + x3 (with intercept)
  • No intercept: y ~ x1 + x2 - 1 or y ~ 0 + x1 + x2
  • Intercept only: y ~ 1

All formulas follow R/Python syntax for familiarity and ease of use.

πŸ“– Documentation

  • FORMULA_API.md - Complete formula API guide with Python/R equivalents
  • examples/ - Working examples for all estimators
    • string_features.rs - String column support (NEW v1.3.0!)
    • missing_data_features.rs - Missing data toolkit (NEW v1.3.0!)
    • time_series_features.rs - Time series operations: lag, lead, diff, pct_change (NEW v1.3.0!)
    • dataframe_loading.rs - Load data from CSV, JSON, URLs, or Builder pattern
    • csv_formula_example.rs - Load CSV files and run regressions
    • formula_example.rs - General formula API demonstration
    • did_formula_example.rs - Difference-in-Differences with formulas
    • quickstart_formula.rs - Quick start example
    • marginal_effects.rs - Logit/Probit marginal effects (AME/MEM)
    • specification_tests.rs - White, RESET, Breusch-Godfrey, Goldfeld-Quandt tests
    • panel_model_selection.rs - Panel diagnostics and model comparison

Run examples:

# NEW v1.3.0 examples
cargo run --example string_features        # String columns
cargo run --example missing_data_features  # Missing data handling
cargo run --example time_series_features   # Time series operations

# Other examples
cargo run --example dataframe_loading
cargo run --example csv_formula_example
cargo run --example formula_example
cargo run --example marginal_effects
cargo run --example specification_tests

🎯 Why Greeners?

  1. Familiar Syntax: R/Python-style formulas make transition seamless
  2. Type Safety: Rust's type system catches errors at compile time
  3. Performance: Native speed with BLAS/LAPACK backends
  4. Comprehensive: Full suite of econometric estimators
  5. Production Ready: Memory safe, no garbage collection pauses
Commit count: 0

cargo fmt