| Crates.io | intrval |
| lib.rs | intrval |
| version | 0.1.1 |
| created_at | 2025-12-19 19:33:16.107863+00 |
| updated_at | 2026-01-20 16:40:31.869952+00 |
| description | Generic intervals (ranges) library |
| homepage | |
| repository | https://github.com/tsionyx/intrval |
| max_upload_size | |
| id | 1995380 |
| size | 170,656 |
intrvals is a generic intervals library with basic
arithmetic (+, -, *)
and sets (union, intersect, complement) operations support.
Its main structure is an Interval which represents
a single-dimensioned (possibly unbounded) span of values instantiated by any type T.
Allows to simplify the defintions of an interval in common inequality and ranges terms.
For the half-open intervals, the inclusive bound is marked with = symbol;
for the closed interval both [a, b] and (=a, =b) defintions are possible.
use intrval::{interval, Interval};
let i0: Interval<i16> = interval!(0);
assert_eq!(i0, Interval::Empty);
let igt2: Interval<i16> = interval!(> 2);
assert_eq!(igt2, Interval::GreaterThan(2));
let igt10: Interval<i16> = interval!(> 10);
assert_eq!(igt10, Interval::GreaterThan(10));
let i_2to10_incl: Interval<i16> = interval!([-2, 10]);
assert_eq!(i_2to10_incl, Interval::Closed((-2, 10)));
let i5to20_excl: Interval<i16> = interval!((5, =20));
assert_eq!(i5to20_excl, Interval::LeftOpen((5, 20)));
let iuni: Interval<i16> = interval!(U);
assert_eq!(iuni, Interval::Full);
use core::cmp::Ordering;
use intrval::{interval, Size};
assert!(interval!(0: i32).is_empty());
assert!(interval!((1, 0)).is_empty());
assert!(interval!((0, 0)).is_empty());
assert!(!(interval!([0, 0]).is_empty()));
assert!(interval!(U: i32).is_full());
let igt10 = interval!(> 10);
assert!(igt10.contains(&11));
assert!(!(igt10.contains(&10)));
assert!(!(interval!(0).contains(&0)));
assert_eq!(interval!(0: i8).len(), Size::Empty);
assert_eq!(interval!((1, 0)).len(), Size::Empty);
assert_eq!(interval!([1, 1]).len(), Size::SinglePoint);
assert_eq!(interval!((-10, =10)).len(), Size::Finite(20));
assert_eq!(interval!(> 2).len(), Size::Infinite);
let i_left_open = interval!((2, =5));
assert_eq!(i_left_open.clamp(10).unwrap(), (Ordering::Equal, 5));
assert_eq!(i_left_open.clamp(3).unwrap(), (Ordering::Equal, 3));
assert_eq!(i_left_open.clamp(2).unwrap(), (Ordering::Greater, 2));
assert_eq!(i_left_open.clamp(0).unwrap(), (Ordering::Greater, 2));
Add, subtract or multiply the interval bounds with a scalar value of type U
if the underlying type T: {Add, Sub, Mult}<U>:
use intrval::{interval, Interval};
// negation changes the sign and flips the bounds
assert_eq!(-interval!(> 2), interval!(< -2));
assert_eq!(-interval!([-2, 10]), interval!([-10, 2]));
// full and empy does not change with scalars
assert_eq!(interval!(0) + 5, interval!(0));
assert_eq!(interval!(0: i32) * 2, interval!(0));
assert_eq!(interval!(U) - 100, interval!(U));
assert_eq!(interval!(U: i32) * -5, interval!(U));
// however, multiplying by 0 is different
assert_eq!(interval!(U: i32) * 0, interval!([0, 0]));
assert_eq!(interval!(> 2) + 3, interval!(> 5));
assert_eq!(interval!(> 10) - 5, interval!(> 5));
assert_eq!(interval!(> 2) * 5, interval!(> 10));
assert_eq!(interval!((5, =20)) / 5, Interval::LeftOpen((1, 4)));
// multiplying/dividing by negative flips the bounds
assert_eq!(interval!([-2, 10]) * -4, interval!([-40, 8]));
assert_eq!(interval!([16, 79]) / -8, Interval::Closed((-9, -2)));
Add, subtract or multiply an Interval<T> with an Interval<U>
to produce another Interval<Z>
if the underlying type T: {Add, Sub, Mult}<U, Output=Z>:
use intrval::interval;
let i0 = interval!(0: i32);
let igt10 = interval!(> 10);
let i_2to10_incl = interval!([-2, 10]);
let i5to20_excl = interval!((5, =20));
let iuni = interval!(U: i32);
assert_eq!(igt10 + i_2to10_incl, interval!(> 8));
// adding degenerate does not change the normal one
assert_eq!(igt10 + interval!((1, 0)), igt10);
assert_eq!(interval!((1, 0)) + igt10, igt10);
assert_eq!(i_2to10_incl - i5to20_excl, interval!((=-22, 5)));
// subtracting degenerate does not change the normal one
assert_eq!(igt10 - interval!((1, 0)), igt10);
// subtracting _from_ degenerate negates the normal one
assert_eq!(interval!((2, 0)) - i_2to10_incl, -i_2to10_incl);
// Interval::Empty is neutral over multiplication
assert_eq!(i0 * i_2to10_incl, i0);
// positive (+inf) times positive is positive
assert_eq!(interval!(> 2) * igt10, interval!(> 20));
// positive (+inf) times (negative and positive) is (-inf, +inf)
assert_eq!(igt10 * i_2to10_incl, interval!(U));
assert_eq!(igt10 * i5to20_excl, interval!(> 50));
// Interval::Full is neutral over multiplication
assert_eq!(i5to20_excl * iuni, iuni);
use intrval::{interval, SetOps as _};
let igt2 = interval!(> 2);
let igt_e2 = interval!(>= 2);
let igt10 = interval!(> 10);
assert!(igt_e2.is_super(&igt2));
assert!(igt2.is_sub(&igt_e2));
assert!(!igt2.is_super(&igt_e2));
assert!(!igt_e2.is_sub(&igt2));
assert!(igt2.is_super(&igt10));
assert!(igt10.is_sub(&igt2));
assert!(igt2.is_disjoint(&interval!(< 0)));
assert!(igt2.is_disjoint(&interval!(< 2)));
assert!(!igt2.is_disjoint(&interval!(<= 2)));
assert_eq!(igt2.complement().into_single().unwrap(), interval!(<= 2));
// `.complement` is aliased with `!`
assert_eq!(
(!interval!([-2, 10])).into_pair().unwrap(),
(interval!(< -2), igt10)
);
assert_eq!(
igt2.difference(igt10).unwrap().into_single().unwrap(),
interval!((2, =10)),
);
assert_eq!(
igt2.symmetric_difference(interval!(<= 5))
.unwrap()
.into_pair()
.unwrap(),
(interval!(<= 2), interval!(> 5)),
);
// `.symmetric_difference` is aliased with `^` (falling back to Interval::Empty)
assert_eq!(
(interval!(<= 5) ^ interval!((0, 5))).into_pair().unwrap(),
(interval!(<= 0), interval!(== 5)),
);
assert_eq!(igt2.intersect(igt10).unwrap(), igt10);
// `.intersect` is aliased with `&` (falling back to Interval::Empty)
assert!((igt10 & interval!([-2, 10])).is_empty());
assert_eq!(
interval!([-2, 10]) & interval!((5, =20)),
interval!((5, =10))
);
assert_eq!(
igt10.union(interval!([-2, 10])).into_single().unwrap(),
interval!(>= -2)
);
// `.union` is aliased with `|`
assert_eq!(
(interval!([-2, 10]) | igt2).into_single().unwrap(),
interval!(>= -2)
);
assert_eq!(
(interval!((5, 10)) | interval!([3, 4]))
.into_pair()
.unwrap(),
// reorders the input intervals in left-to-right order if they do not intersect
(interval!([3, 4]), interval!((5, 10)))
);
assert_eq!((interval!(0) | igt2).into_single().unwrap(), igt2);
assert_eq!((igt2 | interval!(0)).into_single().unwrap(), igt2);
assert_eq!(interval!([-2, 10]).enclosure(igt10 * 2), interval!(>= -2));
By default, all the features below are disabled to ensure minimalistic no-dependency library.
Enables the support of serde::{Serialize, Deserialize} for Interval<T>.
Enables the proptest::Arbitrary for Interval<T> along with the property tests
(could be invoked with cargo test prop_test --features=arbitrary).
This feature is useful if you want to have a dedicated Interval::Singleton
variant (otherwise represented as Interval::Closed).
This allows to create an Interval from a single value
without cloning it.
However, to get the bounds of an Interval, you have to meet
the requirement of T: Clone again.
The table below summarizes these limitations for the Interval<T>
| use case | singleton feature |
no singleton feature |
|---|---|---|
create an Interval from a single point ( Singleton::singleton) |
- | T: Clone |
convert an Interval into a pair of Endpoint-s( Bounded::into_bounds) |
T: Clone |
- |
There are two helper traits used to implement the desired feature-gated behaviour:
trait Singleton to create a point-sized Interval from a single value
(when the feature is disabled, create an Interval::Closed((x.clone(), x)) instead);trait SingletonBounds to convert a single value into a pair of Endpoint-s
(when the feature is disabled, this trait has no methods
and implemented for an Interval<T> unconditionally).