| Crates.io | ipfrs-tensorlogic |
| lib.rs | ipfrs-tensorlogic |
| version | 0.1.0 |
| created_at | 2026-01-18 20:52:48.558746+00 |
| updated_at | 2026-01-18 20:52:48.558746+00 |
| description | Zero-copy tensor operations and logic programming for content-addressed storage |
| homepage | https://github.com/cool-japan/ipfrs |
| repository | https://github.com/cool-japan/ipfrs |
| max_upload_size | |
| id | 2053080 |
| size | 957,431 |
TensorLogic integration layer for IPFRS.
ipfrs-tensorlogic bridges IPFRS with the TensorLogic AI language:
Seamless integration with TensorLogic runtime:
tensorlogic::ir::Term to IPLDDirect memory access without serialization overhead:
Split computation across IPFRS network:
Git-like version control for neural models:
TensorLogic Runtime
↓
Zero-Copy FFI (Apache Arrow)
↓
ipfrs-tensorlogic
├── ir/ # TensorLogic IR codec
├── inference/ # Distributed reasoning
├── gradient/ # Gradient storage & tracking
└── ffi/ # Foreign function interface
↓
ipfrs-core (Blocks & CID)
use ipfrs_tensorlogic::{TensorLogicNode, InferenceEngine};
use tensorlogic::ir::Term;
// Initialize node with TensorLogic support
let node = TensorLogicNode::new(config).await?;
// Store logic term
let term = Term::from_str("knows(alice, bob)")?;
let cid = node.put_term(term).await?;
// Distributed inference
let query = Term::from_str("knows(alice, ?X)")?;
let solutions = node.infer(query).await?;
// Access tensor data (zero-copy)
let weights = node.get_tensor(cid).await?;
let array: ArrayView2<f32> = weights.as_arrow_array()?;
tensorlogic - Core AI language runtimearrow - Columnar data formatsafetensors - Tensor serializationipfrs-core - IPFRS primitives