iptrie

Crates.ioiptrie
lib.rsiptrie
version0.8.8
sourcesrc
created_at2023-08-07 15:26:39.657581
updated_at2024-10-07 09:53:07.405872
descriptionIPv4/v6 prefixes lookup structures (based on tries)
homepage
repositoryhttps://github.com/Orange-OpenSource/iptrie
max_upload_size
id938041
size27,329,527
Christophe Dousson (XopheD)

documentation

README

iptrie

Crates.io Crates.io License Docs

This crate implements tries dedicated to IP addresses and prefixes lookup.

It provides sets and maps for Ipv4, Ipv6 and both mixed.

Each structure exists in two versions:

  • a first one based on Patricia trie which can be viewed as a standard map or set with a lookup operation for finding the longest prefix match

  • a compressed one based one Level-Compressed trie (LC-Trie), optimized for lookup operation (longest prefix match) but which can’t be modified

Example

fn main()
{
    let prefixes = [
        "1.1.0.0/24",
        "1.1.1.0/24",
        "1.1.0.0/20",
        "1.1.2.0/24"
    ];

    let iter = prefixes.iter().map(|x| x.parse::<Ipv4Prefix>().unwrap());

    // a set based on Patricia trie
    let trie = Ipv4RTrieSet::from_iter(iter);

    // lpm lookup for Ipv4 address
    assert_eq!(trie.lookup(&"1.1.1.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.1.0/24");
    assert_eq!(trie.lookup(&"1.1.2.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.0.0/20");

    // lpm lookup for Ipv4 prefix also works
    assert_eq!(trie.lookup(&"1.1.0.0/25".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/24");
    assert_eq!(trie.lookup(&"1.1.0.0/21".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/20");


    // now, compute the set based on LC-trie
    let lctrie = trie.compress();

    // lpm lookup for Ipv4 address
    assert_eq!(lctrie.lookup(&"1.1.1.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.1.0/24");
    assert_eq!(lctrie.lookup(&"1.1.2.2".parse::<Ipv4Addr>().unwrap()).to_string(), "1.1.0.0/20");

    // lpm lookup for Ipv4 prefix also works
    assert_eq!(lctrie.lookup(&"1.1.0.0/25".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/24");
    assert_eq!(lctrie.lookup(&"1.1.0.0/21".parse::<Ipv4Prefix>().unwrap()).to_string(), "1.1.0.0/20");
}

Performances

For this crate, we want the highest performance for lookup despite the insertion operation. We made comparison with the crate ip_network_table-deps-treebitmap identified by IpLookupTable in the next sections.

Lookup algorithms

Randomly generated prefixes

We generated one million of random prefixes for Ipv4 and Ipv6 in order to feed the lookup table. Then, we checked the lookup procedure with randomly generated Ip addresses.

Ipv4 lookup Ipv6 lookup
IpLookupTable 50 ns 165 ns
Patricia trie (this crate) 125 ns 700 ns
LC-Trie (this crate) 80 ns 320 ns

The lookup table based on tree bitmap is the best choice.

BGP prefixes

But the internet has an internal structure that is not random. So, we use a real BGP table with more than 1M Ipv4 prefixes and more than 175k Ipv6 prefixes. Then, we checked the lookup procedure with randomly generated Ip addresses.

Ipv4 lookup Ipv6 lookup
IpLookupTable 61 ns 50 ns
Patricia trie (this crate) 130 ns 42 ns
LC-Trie (this crate) 47 ns 24 ns

This time, the lookup based on LC-Trie has the best performances.

Building the tries

Time consuming

We built lookup tables from 100k of random prefixes for Ipv4 and the same for Ipv6, and then we built lookup tables from 100k out of a real BGP table for Ipv4 and the same for Ipv6.

The BGP table is read and inserted in prefix order (i.e. highest prefix in first) which is the best case for building a prefix trie.

Ipv4 random Ipv6 random Ipv4 BGP Ipv6 BGP
IpLookupTable 21 ms 58 ms 24 ms 95 ms
Patricia trie (this crate) 13 ms 16 ms 12 ms 8 ms
LC-Trie (this crate) 15 ms 21 ms 17 ms 14 ms

Note that building a LC-Trie consists of building a Patricia Trie then compressing it.

Memory

We use a real BGP table with more than 1M Ipv4 prefixes and more than 175k Ipv6 prefixes.

Ipv4 BGP Ipv6 BGP
IpLookupTable 5.7 M 2.2 M
Patricia trie (this crate) 28.8 M 9.1 M
LC-Trie (this crate) 19.4 M 7.6 M

The IpLookupTable is definitively the good choice for applications with limited memory.

(I guess I will work on this for next releases)

Commit count: 80

cargo fmt