Crates.io | jtd |
lib.rs | jtd |
version | 0.3.1 |
source | src |
created_at | 2020-03-03 05:27:04.047183 |
updated_at | 2021-01-31 17:22:56.58277 |
description | A Rust implementation of JSON Type Definition |
homepage | |
repository | |
max_upload_size | |
id | 214767 |
size | 226,335 |
JSON Type Definition, aka RFC8927, is an easy-to-learn, standardized way to define a schema for JSON data. You can use JSON Typedef to portably validate data across programming languages, create dummy data, generate code, and more.
jtd
is a Rust implementation of JSON Typedef. You can use this crate to parse
JSON Typedef schemas, validate JSON data against those schemas, or build your
own tooling on top of JSON Typedef.
Here's an example of this crate in action:
use jtd::{Schema, ValidationErrorIndicator};
use serde_json::json;
let schema = Schema::from_serde_schema(
serde_json::from_value(json!({
"properties": {
"name": { "type": "string" },
"age": { "type": "uint32" },
"phones": {
"elements": {
"type": "string"
}
}
}
})).unwrap()).unwrap();
// Since this first example is valid, we'll get back an empty list of
// validation errors.
let input_ok = json!({
"name": "John Doe",
"age": 43,
"phones": ["+44 1234567", "+44 2345678"]
});
assert_eq!(
Vec::<ValidationErrorIndicator>::new(),
jtd::validate(&schema, &input_ok, Default::default()).unwrap(),
);
// This example is invalid, so we'll get back three validation errors:
//
// 1. "name" is required but not present,
// 2. "age" has the wrong type
// 3. "phones[1]" has the wrong type
let input_bad = json!({
"age": "43",
"phones": ["+44 1234567", 442345678]
});
// Each error indicator has two pieces of information: the path to the part
// of the input that was rejected (the "instance path"), and the part of the
// schema that rejected it (the "schema path").
//
// The exact values of the instance path and schema path is specified in the
// JSON Type Definition spec.
assert_eq!(
vec![
// "age" has the wrong type (required by "/properties/age/type")
ValidationErrorIndicator {
instance_path: vec!["age".into()],
schema_path: vec!["properties".into(), "age".into(), "type".into()],
},
// "name" is missing (required by "/properties/name")
ValidationErrorIndicator {
instance_path: vec![],
schema_path: vec!["properties".into(), "name".into()],
},
// "phones/1" has the wrong type (required by "/properties/phones/elements/type")
ValidationErrorIndicator {
instance_path: vec!["phones".into(), "1".into()],
schema_path: vec![
"properties".into(),
"phones".into(),
"elements".into(),
"type".into()
],
},
],
jtd::validate(&schema, &input_bad, Default::default()).unwrap(),
);
JSON Type Definition is a schema format for JSON data. A JSON Type Definition schema describes what is and isn't a "valid" JSON document. JSON Type Definition is easy to learn, portable (there are functionally-identical implementations across many programming languages) and standardized (the spec is set in stone as IETF RFC 8927).
Here's an example of a JSON Type Definition schema:
{
"properties": {
"name": {
"type": "string"
},
"isAdmin": {
"type": "boolean"
}
}
}
This schema considers any object with a name
property (whose value must be a
string), an isAdmin
property (whose value must a boolean), and no other
properties, to be valid.
To learn more about JSON Type Definition, check out the online documentation at jsontypedef.com.
Install this crate by adding the following to your Cargo.toml
:
jtd = "0.3"
For detailed documentation on how to use this crate, consult the full API documentation on docs.rs.