| Crates.io | kaccy-ai |
| lib.rs | kaccy-ai |
| version | 0.1.0 |
| created_at | 2026-01-18 22:06:02.06146+00 |
| updated_at | 2026-01-18 22:06:02.06146+00 |
| description | AI-powered intelligence for Kaccy Protocol - forecasting, optimization, and insights |
| homepage | https://github.com/cool-japan/kaccy |
| repository | https://github.com/cool-japan/kaccy |
| max_upload_size | |
| id | 2053207 |
| size | 1,007,846 |
AI services for Kaccy Protocol - Comprehensive LLM-powered evaluation, verification, fraud detection, and automation.
The kaccy-ai crate provides advanced AI capabilities for the Kaccy Protocol, including:
Supports multiple LLM providers with automatic fallback:
use kaccy_ai::{AiEvaluator, EvaluatorConfig};
use kaccy_ai::llm::{LlmClient, OpenAiClient};
let openai = OpenAiClient::with_default_model("your-api-key");
let llm_client = LlmClient::new(Box::new(openai));
let evaluator = AiEvaluator::with_config(llm_client, EvaluatorConfig::default());
let result = evaluator.evaluate_code(
"fn factorial(n: u64) -> u64 { if n == 0 { 1 } else { n * factorial(n - 1) } }",
"rust"
).await?;
println!("Quality: {}, Complexity: {}, Originality: {}",
result.quality_score, result.complexity_score, result.originality_score);
use kaccy_ai::{AiCommitmentVerifier, VerificationRequest};
let verifier = AiCommitmentVerifier::new(llm_client);
let request = VerificationRequest {
commitment: "Release v2.0 of my Rust library".to_string(),
evidence: "https://github.com/user/repo/releases/tag/v2.0".to_string(),
context: Some("Library should include async support".to_string()),
author: Some("github_username".to_string()),
};
let result = verifier.verify_evidence(&request).await?;
println!("Verified: {}, Confidence: {}%", result.verified, result.confidence);
use kaccy_ai::{FraudAnalysisService, FraudAnalysisInput};
let fraud_service = FraudAnalysisService::new(llm_client);
let input = FraudAnalysisInput {
user_id: "user123".to_string(),
content: "Submitted evidence".to_string(),
metadata: Default::default(),
};
let report = fraud_service.analyze(&input).await?;
println!("Risk Level: {:?}, Findings: {}", report.risk_level, report.findings.len());
use kaccy_ai::{AiOracle, OracleConfig, ConsensusStrategy};
let mut oracle = AiOracle::new(OracleConfig {
consensus_strategy: ConsensusStrategy::Majority,
min_confidence: 0.7,
enable_learning: true,
});
oracle.add_model("gpt-4-turbo", llm_client1, 1.2); // Higher weight
oracle.add_model("claude-3-opus", llm_client2, 1.0);
oracle.add_model("gemini-1.5-pro", llm_client3, 0.8);
let decision = oracle.verify_with_consensus(&verification_request).await?;
println!("Decision: {}, Consensus Confidence: {}", decision.verified, decision.confidence);
use kaccy_ai::{BatchCodeEvaluator, BatchConfig};
use std::sync::Arc;
let batch_config = BatchConfig {
max_concurrent: 5,
delay_between_batches_ms: 1000,
continue_on_error: true,
};
let batch_evaluator = BatchCodeEvaluator::new(Arc::new(evaluator), batch_config);
let codes = vec![
("fn add(a: i32, b: i32) -> i32 { a + b }".to_string(), "rust".to_string()),
("function multiply(a, b) { return a * b; }".to_string(), "javascript".to_string()),
];
let results = batch_evaluator.evaluate_batch(codes).await?;
println!("Processed: {}/{}", results.successful.len(), results.total);
use kaccy_ai::{PlagiarismDetector, PlagiarismConfig};
let config = PlagiarismConfig {
similarity_threshold: 0.7,
use_semantic_analysis: true,
ngram_size: 3,
min_token_overlap: 10,
};
let detector = PlagiarismDetector::new(config);
// Detect code plagiarism
let result = detector.detect_code_plagiarism(&code1, &code2).await?;
println!("Similarity: {:.1}%", result.similarity_score * 100.0);
println!("Is Plagiarized: {}", result.is_plagiarized);
// Detect text plagiarism with semantic analysis
let result = detector.detect_text_plagiarism(&text1, &text2).await?;
println!("Token Similarity: {:.1}%", result.details.token_similarity * 100.0);
println!("Semantic Similarity: {:.1}%", result.details.semantic_similarity.unwrap_or(0.0) * 100.0);
use kaccy_ai::{ImageSimilarityDetector, HashAlgorithm, ImageDatabase};
// Create detector with perceptual hashing
let detector = ImageSimilarityDetector::new(10, HashAlgorithm::DHash);
// Hash and compare images
let hash1 = detector.hash_image(&image1_bytes)?;
let hash2 = detector.hash_image(&image2_bytes)?;
let score = detector.compare_hashes(&hash1, &hash2);
if score.is_similar {
println!("Duplicate detected! {:.1}% similar", score.similarity_percent);
}
// Build deduplication database
let mut db = ImageDatabase::new(detector);
db.add_image("img1.png", &image1_bytes)?;
db.add_image("img2.png", &image2_bytes)?;
let duplicates = db.find_duplicates();
println!("Found {} duplicate pairs", duplicates.len());
Automatically routes requests to cost-effective models based on task complexity:
use kaccy_ai::llm::{ModelRouter, TaskComplexity};
let router = ModelRouter::new(routing_config);
// Simple tasks → Gemini Flash (cheapest)
let result = router.route_and_execute(&simple_request, TaskComplexity::Simple).await?;
// Complex tasks → GPT-4 Turbo or Claude Opus (most capable)
let result = router.route_and_execute(&complex_request, TaskComplexity::High).await?;
use kaccy_ai::llm::{CachedLlmClient, LlmCacheConfig};
let cache_config = LlmCacheConfig {
ttl_seconds: 3600,
max_entries: 1000,
enable_semantic_similarity: true,
similarity_threshold: 0.95,
};
let cached_client = CachedLlmClient::new(llm_client, cache_config);
use kaccy_ai::llm::BatchProcessor;
let batch_processor = BatchProcessor::new(max_batch_size, wait_time_ms);
use kaccy_ai::llm::{CircuitBreaker, CircuitBreakerConfig};
let circuit_breaker = CircuitBreaker::new(CircuitBreakerConfig {
failure_threshold: 5,
timeout_seconds: 60,
half_open_max_calls: 3,
});
let result = circuit_breaker.call(|| async {
llm_client.chat(request).await
}).await?;
use kaccy_ai::llm::{RetryExecutor, RetryConfig};
let retry_config = RetryConfig {
max_attempts: 3,
initial_delay_ms: 1000,
max_delay_ms: 10000,
exponential_base: 2.0,
jitter: true,
};
let executor = RetryExecutor::new(retry_config);
let result = executor.execute(|| async { api_call().await }).await?;
use kaccy_ai::llm::{RateLimiter, RateLimiterConfig};
let rate_limiter = RateLimiter::new(RateLimiterConfig {
requests_per_second: 10.0,
burst_size: 20,
});
rate_limiter.acquire().await;
let result = llm_client.chat(request).await?;
Create tiered AI access based on token holdings:
use kaccy_ai::{AccessControlManager, AccessTier, TokenHolder, AiFeature};
use rust_decimal_macros::dec;
let mut access_manager = AccessControlManager::new();
let holder = TokenHolder {
token_id: "token123".to_string(),
user_id: "user456".to_string(),
balance: dec!(50000), // Silver tier (10k-100k tokens)
};
// Check access to features
if access_manager.check_access(&holder, AiFeature::CodeEvaluation)? {
// User has access to code evaluation
}
// Get feature quota
let quota = access_manager.get_feature_quota(&holder, AiFeature::BatchProcessing)?;
println!("Batch processing quota: {} requests/day", quota.max_requests_per_day);
Access Tiers:
Store and retrieve domain-specific knowledge:
use kaccy_ai::{KnowledgeBase, KnowledgeDomain, KnowledgeEntry};
let mut kb = KnowledgeBase::new();
kb.add_entry(KnowledgeEntry {
id: "rust-001".to_string(),
domain: KnowledgeDomain::Programming,
title: "Rust Ownership Rules".to_string(),
content: "Each value has a single owner...".to_string(),
tags: vec!["rust".to_string(), "ownership".to_string()],
metadata: Default::default(),
});
let results = kb.search("ownership rules", Some(KnowledgeDomain::Programming), 5)?;
Predict future commitment success based on historical data:
use kaccy_ai::{ReputationPredictor, IssuerHistory};
let predictor = ReputationPredictor::new(llm_client);
let history = IssuerHistory {
issuer_id: "issuer123".to_string(),
commitments: vec![/* historical commitments */],
total_commitments: 50,
completed_commitments: 45,
failed_commitments: 5,
average_completion_time_days: 7.5,
};
let prediction = predictor.predict_commitment_success(&history, "New commitment").await?;
println!("Success probability: {}%, Risk: {:?}",
prediction.success_probability * 100.0, prediction.risk_level);
Comprehensive GitHub verification:
use kaccy_ai::{GitHubClient, GitHubVerifier};
let github_client = GitHubClient::new("github-token".to_string());
let github_verifier = GitHubVerifier::new(github_client);
// Verify commit
let commit_result = github_verifier.verify_commit(
"https://github.com/owner/repo",
"commit-sha",
Some("expected_author")
).await?;
// Verify release
let release_result = github_verifier.verify_release(
"https://github.com/owner/repo",
"v1.0.0",
"Release notes should mention feature X"
).await?;
// Verify PR/Issue closure
let pr_result = github_verifier.verify_pr(
"https://github.com/owner/repo/pull/123",
Some("author")
).await?;
Parse and analyze documents (PDF, Markdown, HTML):
use kaccy_ai::{DocumentParser, PdfParser, QualityAnalyzer};
// Parse PDF
let pdf_parser = PdfParser::new();
let (text, metadata) = pdf_parser.parse_file("document.pdf")?;
// Analyze document quality
let quality_analyzer = QualityAnalyzer::new();
let quality = quality_analyzer.analyze(&text)?;
println!("Readability: {}, Grammar: {}", quality.readability, quality.grammar);
Verify social media posts (Twitter/X, YouTube, LinkedIn):
use kaccy_ai::{SocialMediaParser, SocialMediaVerifier};
let parser = SocialMediaParser::new();
let details = parser.parse_url("https://twitter.com/user/status/123456")?;
let verifier = SocialMediaVerifier::new(llm_client);
let result = verifier.verify_post(&details, "Expected content").await?;
Use pre-configured settings for different environments:
use kaccy_ai::presets::{
DevelopmentPreset,
ProductionPreset,
HighVolumePreset,
CostOptimizedPreset
};
// Development: Fast feedback, lower costs
let dev_config = DevelopmentPreset::evaluator_config();
let dev_oracle = DevelopmentPreset::oracle_config();
// Production: High reliability, quality
let prod_config = ProductionPreset::evaluator_config();
let prod_circuit = ProductionPreset::circuit_breaker_config();
// High Volume: Maximum throughput
let hv_batch = HighVolumePreset::batch_config();
let hv_cache = HighVolumePreset::cache_config();
// Cost Optimized: Minimal cost
let cost_routing = CostOptimizedPreset::routing_config();
Use the high-level service hub for simplified configuration:
use kaccy_ai::{AiServiceBuilder, AiServiceHub};
let service = AiServiceBuilder::new()
.with_openai("openai-key")
.with_anthropic("anthropic-key")
.with_gemini("gemini-key")
.with_github("github-token")
.enable_oracle()
.enable_access_control()
.build()?;
// Use all services through a single hub
let evaluator = service.evaluator()?;
let verifier = service.verifier()?;
let fraud_detector = service.fraud_detector()?;
let oracle = service.oracle()?;
# LLM Provider API Keys
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
GEMINI_API_KEY=...
# Model Selection
OPENAI_MODEL=gpt-4-turbo # Default: gpt-4-turbo
ANTHROPIC_MODEL=claude-3-opus-20240229 # Default: claude-3-opus-20240229
GEMINI_MODEL=gemini-1.5-pro # Default: gemini-1.5-pro
# GitHub Integration
GITHUB_TOKEN=ghp_...
# Optional Configuration
AI_MAX_TOKENS=2000 # Default: 2000
AI_TEMPERATURE=0.7 # Default: 0.7
use kaccy_ai::llm::MetricsCollector;
let mut metrics = MetricsCollector::new();
// Metrics are automatically collected during operations
let snapshot = metrics.snapshot();
println!("Total requests: {}", snapshot.total_requests);
println!("Average latency: {}ms", snapshot.average_latency_ms);
println!("Error rate: {}%", snapshot.error_rate * 100.0);
use kaccy_ai::profiling::PerformanceProfiler;
let mut profiler = PerformanceProfiler::new();
{
let _scope = profiler.start_operation("code_evaluation");
// ... operation ...
}
let report = profiler.generate_report();
println!("{}", report.summary());
# Run unit tests
cargo test -p kaccy-ai
# Run with nextest
cargo nextest run -p kaccy-ai --no-fail-fast
# Run doc tests
cargo test -p kaccy-ai --doc
# Check for warnings
cargo clippy -p kaccy-ai --all-targets --all-features
# Generate documentation
cargo doc -p kaccy-ai --no-deps --open
See the examples module for comprehensive usage examples:
BasicCodeEvaluationExample - Simple code evaluationBatchProcessingExample - Batch processing with error handlingOracleConsensusExample - Multi-model consensusFraudDetectionExample - Comprehensive fraud detectionGeminiIntegrationExample - Gemini provider usageCompleteServiceExample - Full service hub setupIntegrationExample - Real-world integration patternskaccy-ai/
├── src/
│ ├── lib.rs # Public API exports
│ ├── access_control.rs # Token-gated AI access
│ ├── ai_evaluator.rs # Core AI evaluator
│ ├── batch.rs # Batch processing utilities
│ ├── document.rs # Document parsing and analysis
│ ├── error.rs # Error types
│ ├── evaluator.rs # Quality evaluation trait
│ ├── evidence.rs # Evidence parsing
│ ├── examples.rs # Usage examples
│ ├── fraud.rs # Fraud detection
│ ├── github.rs # GitHub integration
│ ├── knowledge_base.rs # Knowledge storage
│ ├── model_version.rs # Model versioning
│ ├── ocr.rs # OCR and image analysis
│ ├── oracle.rs # AI oracle with consensus
│ ├── presets.rs # Configuration presets
│ ├── profiling.rs # Performance profiling
│ ├── reputation_predictor.rs # Reputation prediction
│ ├── service.rs # Service hub
│ ├── social.rs # Social media verification
│ ├── token_analyzer.rs # Token analysis
│ ├── transcript.rs # Video transcript analysis
│ ├── utils.rs # Utility functions
│ ├── verifier.rs # Commitment verifier
│ └── llm/
│ ├── mod.rs # LLM client abstraction
│ ├── openai.rs # OpenAI provider
│ ├── anthropic.rs # Anthropic provider
│ ├── gemini.rs # Google Gemini provider
│ ├── types.rs # Common types
│ ├── cache.rs # Response caching
│ ├── circuit_breaker.rs # Circuit breaker pattern
│ ├── cost_optimizer.rs # Cost optimization
│ ├── metrics.rs # Metrics collection
│ ├── observability.rs # Logging and tracing
│ ├── rate_limiter.rs # Rate limiting
│ ├── retry.rs # Retry logic
│ └── streaming.rs # Streaming support
└── Cargo.toml
Estimated costs per operation (using GPT-4 Turbo as baseline):
| Operation | Tokens | Cost |
|---|---|---|
| Code Evaluation | ~1,500 | $0.015 |
| Content Evaluation | ~1,200 | $0.012 |
| Commitment Verification | ~2,000 | $0.020 |
| Fraud Detection | ~2,500 | $0.025 |
| Oracle (3 models) | ~6,000 | $0.060 |
Cost Optimization Strategies:
Core dependencies:
tokio - Async runtimereqwest - HTTP clientserde / serde_json - Serializationasync-trait - Async traitsthiserror - Error handlingtracing - Logging and observabilitySpecialized:
lopdf - PDF parsingimage - Image processingregex - Pattern matchingrust_decimal - Precise decimal mathMIT OR Apache-2.0