kddbscan

Crates.iokddbscan
lib.rskddbscan
version0.1.0
sourcesrc
created_at2020-06-13 15:19:45.10748
updated_at2020-06-13 15:19:45.10748
descriptionA k -Deviation Density Based Clustering Algorithm (kDDBSCAN)
homepagehttps://github.com/whizsid/kddbscan-rs
repositoryhttps://github.com/whizsid/kddbscan-rs
max_upload_size
id253589
size29,557
WhizSid (whizsid)

documentation

https://docs.rs/kddbscan

README

kddbscan-rs

GitHub Actions crates.io MIT licensed Released API docs Master API docs

Rust implementation of the kddbscan clustering algorithm.

From the authors of kDDBSCAN algorithm.

Due to the adoption of global parameters, DBSCAN fails to identify clusters with different and varied densities. To solve the problem, this paper extends DBSCAN by exploiting a new density definition and proposes a novel algorithm called k -deviation density based DBSCAN (kDDBSCAN). Various datasets containing clusters with arbitrary shapes and different or varied densities are used to demonstrate the performance and investigate the feasibility and practicality of kDDBSCAN. The results show that kDDBSCAN performs better than DBSCAN.

Read More

Installation

Add kddbscan as a dependency in your Cargo.toml file

[dependencies]
kddbscan = "0.1.0"

Usage

Implement IntoPoint trait on your point struct. And pass a vector of points to the cluster function.

use kddbscan::{cluster, IntoPoint, ClusterId};

pub struct Coordinate {
    pub x: f64,
    pub y: f64,
}

impl IntoPoint for Coordinate {
    fn get_distance(&self, neighbor: &Coordinate) -> f64 {
        ((self.x - neighbor.x).powi(2) + (self.y - neighbor.y).powi(2)).powf(0.5)
    }
}

fn main() {
    let mut coordinates: Vec<Coordinate> = vec![];
    coordinates.push(Coordinate { x: 11.0, y: 12.0 });
    coordinates.push(Coordinate { x: 0.0, y: 0.0 });
    coordinates.push(Coordinate { x: 12.0, y: 11.0 });
    coordinates.push(Coordinate { x: 11.0, y: 9.0 });
    coordinates.push(Coordinate { x: 10.0, y: 8.0 });
    coordinates.push(Coordinate { x: 1.0, y: 2.0 });
    coordinates.push(Coordinate { x: 3.0, y: 1.0 });
    coordinates.push(Coordinate { x: 4.0, y: 4.0 });
    coordinates.push(Coordinate { x: 9.0, y: 0.0 });

    let clustered =  cluster(coordinates, 2, None, None);
}

Showcase

This is the output of example project.

Output of the kddbscan algorithm

Contribution

All PRs and issues are welcome. and starts are also welcome.

License

This project is under the MIT license and the algorithm is under the CC BY 4.0 license.

Commit count: 19

cargo fmt