Crates.io | kdtree-simd |
lib.rs | kdtree-simd |
version | 0.6.1-alpha.0 |
source | src |
created_at | 2022-10-01 19:56:04.796869 |
updated_at | 2022-10-01 19:56:04.796869 |
description | K-dimensional tree in Rust for fast geospatial indexing and nearest neighbors lookup |
homepage | |
repository | https://github.com/mrhooray/kdtree-rs |
max_upload_size | |
id | 677983 |
size | 73,657 |
K-dimensional tree in Rust for fast geospatial indexing and nearest neighbors lookup
Add kdtree
to Cargo.toml
[dependencies]
kdtree = "0.5.1"
Add points to kdtree and query nearest n points with distance function
use kdtree::KdTree;
use kdtree::ErrorKind;
use kdtree::distance::squared_euclidean;
let a: ([f64; 2], usize) = ([0f64, 0f64], 0);
let b: ([f64; 2], usize) = ([1f64, 1f64], 1);
let c: ([f64; 2], usize) = ([2f64, 2f64], 2);
let d: ([f64; 2], usize) = ([3f64, 3f64], 3);
let dimensions = 2;
let mut kdtree = KdTree::new(dimensions);
kdtree.add(&a.0, a.1).unwrap();
kdtree.add(&b.0, b.1).unwrap();
kdtree.add(&c.0, c.1).unwrap();
kdtree.add(&d.0, d.1).unwrap();
assert_eq!(kdtree.size(), 4);
assert_eq!(
kdtree.nearest(&a.0, 0, &squared_euclidean).unwrap(),
vec![]
);
assert_eq!(
kdtree.nearest(&a.0, 1, &squared_euclidean).unwrap(),
vec![(0f64, &0)]
);
assert_eq!(
kdtree.nearest(&a.0, 2, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1)]
);
assert_eq!(
kdtree.nearest(&a.0, 3, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1), (8f64, &2)]
);
assert_eq!(
kdtree.nearest(&a.0, 4, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1), (8f64, &2), (18f64, &3)]
);
assert_eq!(
kdtree.nearest(&a.0, 5, &squared_euclidean).unwrap(),
vec![(0f64, &0), (2f64, &1), (8f64, &2), (18f64, &3)]
);
assert_eq!(
kdtree.nearest(&b.0, 4, &squared_euclidean).unwrap(),
vec![(0f64, &1), (2f64, &0), (2f64, &2), (8f64, &3)]
);
cargo bench
with 2.3 GHz Intel i5-7360U:
cargo bench
Running target/release/deps/bench-9e622e6a4ed9b92a
running 2 tests
test bench_add_to_kdtree_with_1k_3d_points ... bench: 106 ns/iter (+/- 25)
test bench_nearest_from_kdtree_with_1k_3d_points ... bench: 1,237 ns/iter (+/- 266)
test result: ok. 0 passed; 0 failed; 0 ignored; 2 measured; 0 filtered out
Thanks Eh2406 for various fixes and perf improvements.
Licensed under either of
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.