kimi-expert-analyzer

Crates.iokimi-expert-analyzer
lib.rskimi-expert-analyzer
version0.1.1
created_at2025-07-13 20:58:12.762678+00
updated_at2025-07-13 20:58:12.762678+00
descriptionExpert analysis tool for Kimi-K2 to Rust-WASM conversion
homepagehttps://github.com/ruvnet/Synaptic-Mesh
repositoryhttps://github.com/ruvnet/Synaptic-Mesh
max_upload_size
id1750792
size270,327
rUv (ruvnet)

documentation

https://docs.rs/kimi-expert-analyzer

README

Kimi-K2 Expert Analyzer

A comprehensive toolkit for analyzing Kimi-K2's mixture-of-experts architecture and creating lightweight micro-experts for Rust-WASM deployment.

Crates.io Documentation License

Overview

The Kimi-K2 Expert Analyzer is designed to convert Kimi-K2's massive 1T parameter mixture-of-experts model into efficient micro-experts (1K-100K parameters each) that can run in WebAssembly environments. This enables deployment of Kimi-like intelligence in browsers, edge devices, and embedded systems.

โœจ Key Features

  • ๐Ÿ” Expert Analysis: Deep analysis of neural network architectures
  • ๐Ÿฅƒ Knowledge Distillation: Extract knowledge from large models to micro-experts
  • ๐Ÿ“Š Performance Profiling: Detailed performance analysis and optimization
  • ๐ŸŽฏ Architecture Optimization: Suggest optimal architectures for WASM deployment
  • ๐Ÿ“ˆ Statistical Analysis: Comprehensive statistical analysis of model behavior
  • ๐Ÿ”ง Conversion Tools: Tools for Kimi-K2 to Rust conversion

๐Ÿ› ๏ธ Installation

Add this to your Cargo.toml:

[dependencies]
kimi-expert-analyzer = "0.1.0"

๐Ÿ“– Usage

Basic Analysis

use kimi_expert_analyzer::{Analyzer, AnalysisConfig};

// Create analyzer
let analyzer = Analyzer::new();

// Analyze a neural network
let analysis = analyzer
    .analyze_network(&model)
    .with_metrics(&["accuracy", "latency", "memory"])
    .run()?;

println!("Analysis Results: {:#?}", analysis);

Knowledge Distillation

use kimi_expert_analyzer::Distillation;

// Set up distillation
let distiller = Distillation::new()
    .teacher_model(&large_model)
    .student_config(student_config)
    .temperature(3.0)
    .alpha(0.7);

// Perform distillation
let micro_expert = distiller.distill(&training_data)?;

CLI Usage

# Analyze a model
kimi-analyzer analyze --model model.onnx --output analysis.json

# Distill knowledge
kimi-analyzer distill --teacher large_model.onnx --student config.json --output micro_expert.wasm

# Profile performance
kimi-analyzer profile --model model.wasm --benchmark performance_suite

๐Ÿ—๏ธ Architecture Analysis

Supported Analysis Types

  • ๐Ÿ”ฌ Architecture Analysis: Layer analysis, parameter counting, computational complexity
  • โšก Performance Analysis: Latency, throughput, memory usage, FLOPS
  • ๐ŸŽฏ Optimization Analysis: Pruning opportunities, quantization potential
  • ๐Ÿง  Knowledge Analysis: Information flow, attention patterns, feature importance

Distillation Strategies

use kimi_expert_analyzer::distillation::Strategy;

// Attention-based distillation
let strategy = Strategy::Attention {
    layers: vec![6, 8, 10],
    weight: 0.5,
};

// Feature-based distillation
let strategy = Strategy::Feature {
    intermediate_layers: true,
    feature_weight: 0.3,
};

// Response-based distillation
let strategy = Strategy::Response {
    temperature: 4.0,
    alpha: 0.8,
};

๐Ÿ“Š Analysis Reports

Performance Metrics

use kimi_expert_analyzer::metrics::PerformanceReport;

let report = analyzer.generate_performance_report(&model)?;
println!("Inference Time: {} ms", report.avg_inference_time);
println!("Memory Usage: {} MB", report.peak_memory);
println!("WASM Bundle Size: {} KB", report.wasm_size);

Optimization Suggestions

let suggestions = analyzer.optimization_suggestions(&model)?;
for suggestion in suggestions {
    println!("Optimization: {}", suggestion.description);
    println!("Expected Speedup: {}x", suggestion.speedup_factor);
    println!("Memory Reduction: {}%", suggestion.memory_reduction);
}

๐Ÿงช Validation

Model Validation

use kimi_expert_analyzer::validation::Validator;

let validator = Validator::new()
    .with_test_suite(&test_data)
    .with_tolerance(0.01);

let validation_result = validator.validate_conversion(
    &original_model,
    &converted_model
)?;

assert!(validation_result.accuracy_preserved);
assert!(validation_result.performance_improved);

๐ŸŽฏ Features

  • default - PyTorch support
  • pytorch - PyTorch model analysis
  • candle-support - Candle framework integration
  • numpy-support - NumPy array support
  • plotting - Visualization capabilities
  • full - All features enabled

๐Ÿ”ง CLI Tool

The crate includes a powerful CLI tool:

# Installation
cargo install kimi-expert-analyzer

# Basic analysis
kimi-analyzer analyze --input model.pt --format pytorch

# Distillation workflow
kimi-analyzer workflow distill \
    --teacher large_model.pt \
    --config micro_expert_config.json \
    --output optimized_expert.wasm

# Batch processing
kimi-analyzer batch --input models/ --output analyzed/

๐Ÿ“ˆ Benchmarks

# Run performance benchmarks
cargo bench

# Generate analysis reports
cargo run --bin kimi-analyzer -- benchmark --suite comprehensive

๐Ÿ”ฌ Research Applications

  • Model Compression: Analyze compression techniques effectiveness
  • Architecture Search: Find optimal micro-expert architectures
  • Transfer Learning: Analyze knowledge transfer between models
  • Deployment Optimization: Optimize for specific deployment targets

๐Ÿ“š Documentation

๐Ÿค Contributing

Contributions are welcome! Please see our Contributing Guide.

๐Ÿ“„ License

Licensed under either of:

at your option.

๐Ÿ”— Related Projects


Empowering efficient neural network conversion for the WASM ecosystem

Commit count: 0

cargo fmt