| Crates.io | kimi-expert-analyzer |
| lib.rs | kimi-expert-analyzer |
| version | 0.1.1 |
| created_at | 2025-07-13 20:58:12.762678+00 |
| updated_at | 2025-07-13 20:58:12.762678+00 |
| description | Expert analysis tool for Kimi-K2 to Rust-WASM conversion |
| homepage | https://github.com/ruvnet/Synaptic-Mesh |
| repository | https://github.com/ruvnet/Synaptic-Mesh |
| max_upload_size | |
| id | 1750792 |
| size | 270,327 |
A comprehensive toolkit for analyzing Kimi-K2's mixture-of-experts architecture and creating lightweight micro-experts for Rust-WASM deployment.
The Kimi-K2 Expert Analyzer is designed to convert Kimi-K2's massive 1T parameter mixture-of-experts model into efficient micro-experts (1K-100K parameters each) that can run in WebAssembly environments. This enables deployment of Kimi-like intelligence in browsers, edge devices, and embedded systems.
Add this to your Cargo.toml:
[dependencies]
kimi-expert-analyzer = "0.1.0"
use kimi_expert_analyzer::{Analyzer, AnalysisConfig};
// Create analyzer
let analyzer = Analyzer::new();
// Analyze a neural network
let analysis = analyzer
.analyze_network(&model)
.with_metrics(&["accuracy", "latency", "memory"])
.run()?;
println!("Analysis Results: {:#?}", analysis);
use kimi_expert_analyzer::Distillation;
// Set up distillation
let distiller = Distillation::new()
.teacher_model(&large_model)
.student_config(student_config)
.temperature(3.0)
.alpha(0.7);
// Perform distillation
let micro_expert = distiller.distill(&training_data)?;
# Analyze a model
kimi-analyzer analyze --model model.onnx --output analysis.json
# Distill knowledge
kimi-analyzer distill --teacher large_model.onnx --student config.json --output micro_expert.wasm
# Profile performance
kimi-analyzer profile --model model.wasm --benchmark performance_suite
use kimi_expert_analyzer::distillation::Strategy;
// Attention-based distillation
let strategy = Strategy::Attention {
layers: vec![6, 8, 10],
weight: 0.5,
};
// Feature-based distillation
let strategy = Strategy::Feature {
intermediate_layers: true,
feature_weight: 0.3,
};
// Response-based distillation
let strategy = Strategy::Response {
temperature: 4.0,
alpha: 0.8,
};
use kimi_expert_analyzer::metrics::PerformanceReport;
let report = analyzer.generate_performance_report(&model)?;
println!("Inference Time: {} ms", report.avg_inference_time);
println!("Memory Usage: {} MB", report.peak_memory);
println!("WASM Bundle Size: {} KB", report.wasm_size);
let suggestions = analyzer.optimization_suggestions(&model)?;
for suggestion in suggestions {
println!("Optimization: {}", suggestion.description);
println!("Expected Speedup: {}x", suggestion.speedup_factor);
println!("Memory Reduction: {}%", suggestion.memory_reduction);
}
use kimi_expert_analyzer::validation::Validator;
let validator = Validator::new()
.with_test_suite(&test_data)
.with_tolerance(0.01);
let validation_result = validator.validate_conversion(
&original_model,
&converted_model
)?;
assert!(validation_result.accuracy_preserved);
assert!(validation_result.performance_improved);
default - PyTorch supportpytorch - PyTorch model analysiscandle-support - Candle framework integrationnumpy-support - NumPy array supportplotting - Visualization capabilitiesfull - All features enabledThe crate includes a powerful CLI tool:
# Installation
cargo install kimi-expert-analyzer
# Basic analysis
kimi-analyzer analyze --input model.pt --format pytorch
# Distillation workflow
kimi-analyzer workflow distill \
--teacher large_model.pt \
--config micro_expert_config.json \
--output optimized_expert.wasm
# Batch processing
kimi-analyzer batch --input models/ --output analyzed/
# Run performance benchmarks
cargo bench
# Generate analysis reports
cargo run --bin kimi-analyzer -- benchmark --suite comprehensive
Contributions are welcome! Please see our Contributing Guide.
Licensed under either of:
at your option.
Empowering efficient neural network conversion for the WASM ecosystem