| Crates.io | kizzasi |
| lib.rs | kizzasi |
| version | 0.1.0 |
| created_at | 2026-01-19 00:32:18.327658+00 |
| updated_at | 2026-01-19 00:32:18.327658+00 |
| description | Autoregressive General-Purpose Signal Predictor (AGSP) - Neuro-Symbolic Architecture for continuous signal streams |
| homepage | https://github.com/cool-japan/kizzasi |
| repository | https://github.com/cool-japan/kizzasi |
| max_upload_size | |
| id | 2053382 |
| size | 514,720 |
Autoregressive General-Purpose Signal Predictor (AGSP)
Neuro-symbolic architecture for continuous signal streams with state space models and constraint enforcement.
Kizzasi (兆し - "sign/omen") is a Rust-native system for predicting continuous signal streams using state space models. Treats all modalities (audio, sensors, video, control signals) as equivalent signal streams.
use kizzasi::{Kizzasi, ModelType};
// Create predictor with Mamba2 model
let predictor = Kizzasi::builder()
.model_type(ModelType::Mamba2)
.input_dim(32)
.output_dim(32)
.hidden_dim(64)
.build()?;
// Single-step prediction
let input = vec![0.1, 0.2, 0.3, /* ... */];
let output = predictor.step(input)?;
// Multi-step rollout
let predictions = predictor.predict_n(input, 100)?;
// With safety guardrails
use kizzasi::prelude::*;
let constrained = predictor
.with_guardrails(my_constraints)
.step(input)?;
kizzasi/
├── kizzasi-core # SSM engine, SIMD, parallel scan
├── kizzasi-model # Mamba, RWKV, S4, Transformer
├── kizzasi-tokenizer # VQ-VAE, quantization, compression
├── kizzasi-inference # Pipeline, sampling, streaming
├── kizzasi-logic # Constraints, optimization, safety
├── kizzasi-io # MQTT, audio, sensors, video
└── kizzasi # Unified facade (this crate)
// Audio processing (16kHz, mel features)
let audio_predictor = Kizzasi::audio_preset(80)?;
// Robotics control (6-DOF arm)
let robot = Kizzasi::robotics_preset(6)?;
// Sensor streams (IoT)
let sensor = Kizzasi::sensor_preset(16)?;
// Lightweight (edge devices)
let edge = Kizzasi::lightweight_preset(32)?;
If you use Kizzasi in research, please cite:
@software{kizzasi2024,
title = {Kizzasi: Autoregressive General-Purpose Signal Predictor},
author = {COOLJAPAN Team},
year = {2024},
url = {https://github.com/cool-japan/kizzasi}
}
Licensed under either of Apache License, Version 2.0 or MIT license at your option.
See CONTRIBUTING.md