| Crates.io | kizzasi-tokenizer |
| lib.rs | kizzasi-tokenizer |
| version | 0.1.0 |
| created_at | 2026-01-19 00:20:18.663451+00 |
| updated_at | 2026-01-19 00:20:18.663451+00 |
| description | Signal quantization and tokenization for Kizzasi AGSP - VQ-VAE, μ-law, continuous embeddings |
| homepage | https://github.com/cool-japan/kizzasi |
| repository | https://github.com/cool-japan/kizzasi |
| max_upload_size | |
| id | 2053364 |
| size | 782,965 |
Signal quantization and tokenization for Kizzasi AGSP.
Comprehensive tokenization toolkit for continuous signals with VQ-VAE, μ-law, and advanced quantization strategies. Designed for audio, sensors, and general signal compression.
use kizzasi_tokenizer::{LinearQuantizer, SignalTokenizer};
// 8-bit linear quantization
let mut quantizer = LinearQuantizer::new(8, -1.0, 1.0)?;
let signal = Array1::from_vec(vec![0.5, -0.3, 0.8]);
let codes = quantizer.encode(&signal)?;
let reconstructed = quantizer.decode(&codes)?;
// VQ-VAE with learned codebook
use kizzasi_tokenizer::VQVAETokenizer;
let vqvae = VQVAETokenizer::new(512, 32, 64)?; // codebook_size, dim, embed_dim
Licensed under either of Apache License, Version 2.0 or MIT license at your option.