Crates.io | lamellar |
lib.rs | lamellar |
version | 0.6.1 |
source | src |
created_at | 2020-09-02 03:14:48.456242 |
updated_at | 2024-02-16 05:05:00.120214 |
description | Lamellar is an asynchronous tasking runtime for HPC systems developed in RUST. |
homepage | https://github.com/pnnl/lamellar-runtime |
repository | https://github.com/pnnl/lamellar-runtime |
max_upload_size | |
id | 283725 |
size | 2,809,552 |
Lamellar is an investigation of the applicability of the Rust systems programming language for HPC as an alternative to C and C++, with a focus on PGAS approaches.
Through out this readme and API documentation (https://docs.rs/lamellar/latest/lamellar/) there are a few terms we end up reusing a lot, those terms and brief descriptions are provided below:
PE
- a processing element, typically a multi threaded process, for those familiar with MPI, it corresponds to a Rank.
Node
(meaning a compute node) is used instead of PE
in these cases they are interchangeableWorld
- an abstraction representing your distributed computing system
Team
- A subset of the PEs that exist in the worldAM
- short for Active MessageCollective Operation
- Generally means that all PEs (associated with a given distributed object) must explicitly participate in the operation, otherwise deadlock will occur.
One-sided Operation
- Generally means that only the calling PE is required for the operation to successfully complete.
Lamellar provides several different communication patterns and programming models to distributed applications, briefly highlighted below
Lamellar allows for sending and executing user defined active messages on remote PEs in a distributed environment. User first implement runtime exported trait (LamellarAM) for their data structures and then call a procedural macro #[lamellar::am] on the implementation. The procedural macro produces all the necessary code to enable remote execution of the active message. More details can be found in the Active Messaging module documentation.
Lamellar provides a distributed extension of an Arc
called a Darc.
Darcs provide safe shared access to inner objects in a distributed environment, ensuring lifetimes and read/write accesses are enforced properly.
More details can be found in the Darc module documentation.
Lamellar also provides PGAS capabilities through multiple interfaces.
The first is a high-level abstraction of distributed arrays, allowing for distributed iteration and data parallel processing of elements. More details can be found in the LamellarArray module documentation.
The second is a low level (unsafe) interface for constructing memory regions which are readable and writable from remote PEs. Note that unless you are very comfortable/confident in low level distributed memory (and even then) it is highly recommended you use the LamellarArrays interface More details can be found in the Memory Region module documentation.
Lamellar relies on network providers called Lamellae to perform the transfer of data throughout the system. Currently three such Lamellae exist:
local
- used for single-PE (single system, single process) development (this is the default),shmem
- used for multi-PE (single system, multi-process) development, useful for emulating distributed environments (communicates through shared memory)rofi
- used for multi-PE (multi system, multi-process) distributed development, based on the Rust OpenFabrics Interface Transport Layer (ROFI) (https://github.com/pnnl/rofi).
features = ["enable-rofi"]
to the lamellar entry in your Cargo.toml
fileThe long term goal for lamellar is that you can develop using the local
backend and then when you are ready to run distributed switch to the rofi
backend with no changes to your code.
Currently the inverse is true, if it compiles and runs using rofi
it will compile and run when using local
and shmem
with no changes.
Additional information on using each of the lamellae backends can be found below in the Running Lamellar Applications
section
Our repository also provides numerous examples highlighting various features of the runtime: https://github.com/pnnl/lamellar-runtime/tree/master/examples
Additionally, we are compiling a set of benchmarks (some with multiple implementations) that may be helpful to look at as well: https://github.com/pnnl/lamellar-benchmarks/
Below are a few small examples highlighting some of the features of lamellar, more in-depth examples can be found in the documentation for the various features.
You can select which backend to use at runtime as shown below:
use lamellar::Backend;
fn main(){
let mut world = lamellar::LamellarWorldBuilder::new()
.with_lamellae( Default::default() ) //if "enable-rofi" feature is active default is rofi, otherwise default is `Local`
//.with_lamellae( Backend::Rofi ) //explicity set the lamellae backend to rofi,
//.with_lamellae( Backend::Local ) //explicity set the lamellae backend to local
//.with_lamellae( Backend::Shmem ) //explicity set the lamellae backend to use shared memory
.build();
}
or by setting the following envrionment variable:
LAMELLAE_BACKEND="lamellae"
where lamellae is one of local
, shmem
, or rofi
.
Please refer to the Active Messaging documentation for more details and examples
use lamellar::active_messaging::prelude::*;
#[AmData(Debug, Clone)] // `AmData` is a macro used in place of `derive`
struct HelloWorld { //the "input data" we are sending with our active message
my_pe: usize, // "pe" is processing element == a node
}
#[lamellar::am] // at a highlevel registers this LamellarAM implemenatation with the runtime for remote execution
impl LamellarAM for HelloWorld {
async fn exec(&self) {
println!(
"Hello pe {:?} of {:?}, I'm pe {:?}",
lamellar::current_pe,
lamellar::num_pes,
self.my_pe
);
}
}
fn main(){
let mut world = lamellar::LamellarWorldBuilder::new().build();
let my_pe = world.my_pe();
let num_pes = world.num_pes();
let am = HelloWorld { my_pe: my_pe };
for pe in 0..num_pes{
world.exec_am_pe(pe,am.clone()); // explicitly launch on each PE
}
world.wait_all(); // wait for all active messages to finish
world.barrier(); // synchronize with other PEs
let request = world.exec_am_all(am.clone()); //also possible to execute on every PE with a single call
world.block_on(request); //both exec_am_all and exec_am_pe return futures that can be used to wait for completion and access any returned result
}
Please refer to the LamellarArray documentation for more details and examples
use lamellar::array::prelude::*;
fn main(){
let world = lamellar::LamellarWorldBuilder::new().build();
let my_pe = world.my_pe();
let block_array = AtomicArray::<usize>::new(&world, 1000, Distribution::Block); //we also support Cyclic distribution.
block_array.dist_iter_mut().enumerate().for_each(move |(i,elem)| elem.store(i) ); //simultaneosuly initialize array accross all pes, each pe only updates its local data
block_array.wait_all();
block_array.barrier();
if my_pe == 0{
for (i,elem) in block_array.onesided_iter().into_iter().enumerate(){ //iterate through entire array on pe 0 (automatically transfering remote data)
println!("i: {} = {})",i,elem);
}
}
}
Please refer to the Darc documentation for more details and examples
use lamellar::active_messaging::prelude::*;
use std::sync::atomic::{AtomicUsize,Ordering};
#[AmData(Debug, Clone)] // `AmData` is a macro used in place of `derive`
struct DarcAm { //the "input data" we are sending with our active message
cnt: Darc<AtomicUsize>, // count how many times each PE executes an active message
}
#[lamellar::am] // at a highlevel registers this LamellarAM implemenatation with the runtime for remote execution
impl LamellarAM for DarcAm {
async fn exec(&self) {
self.cnt.fetch_add(1,Ordering::SeqCst);
}
}
fn main(){
let mut world = lamellar::LamellarWorldBuilder::new().build();
let my_pe = world.my_pe();
let num_pes = world.num_pes();
let cnt = Darc::new(&world, AtomicUsize::new());
for pe in 0..num_pes{
world.exec_am_pe(pe,DarcAm{cnt: cnt.clone()}); // explicitly launch on each PE
}
world.exec_am_all(am.clone()); //also possible to execute on every PE with a single call
cnt.fetch_add(1,Ordering::SeqCst); //this is valid as well!
world.wait_all(); // wait for all active messages to finish
world.barrier(); // synchronize with other PEs
assert_eq!(cnt.load(Ordering::SeqCst),num_pes*2 + 1);
}
Lamellar is capable of running on single node workstations as well as distributed HPC systems. For a workstation, simply copy the following to the dependency section of you Cargo.toml file:
lamellar = "0.6.1"
If planning to use within a distributed HPC system copy the following to your Cargo.toml file:
lamellar = { version = "0.6.1", features = ["enable-rofi"]}
NOTE: as of Lamellar 0.6.1 It is no longer necessary to manually install Libfabric, the build process will now try to automatically build libfabric for you. If this process fails, it is still possible to pass in a manual libfabric installation via the OFI_DIR envrionment variable.
For both environments, build your application as normal
cargo build (--release)
There are a number of ways to run Lamellar applications, mostly dictated by the lamellae you want to use.
cargo run --release
lamellar_run.sh
to launch your application
./lamellar_run -N=2 -T=10 <appname>
N
number of PEs (processes) to launch (Default=1)T
number of threads Per PE (Default = number of cores/ number of PEs)<appname>
executable is located at ./target/release/<appname>
salloc -N 2
srun -N 2 -mpi=pmi2 ./target/release/<appname>
pmi2
library is required to grab info about the allocated nodes and helps set up initial handshakesLamellar exposes a number of environment variables that can used to control application execution at runtime
LAMELLAR_THREADS
- The number of worker threads used within a lamellar PE
export LAMELLAR_THREADS=10
LAMELLAE_BACKEND
- the backend used during execution. Note that if a backend is explicitly set in the world builder, this variable is ignored.
local
shmem
rofi
LAMELLAR_MEM_SIZE
- Specify the initial size of the Runtime "RDMAable" memory pool. Defaults to 1GB
export LAMELLAR_MEM_SIZE=$((20*1024*1024*1024))
20GB memory poolLAMELLAR_MEM_SIZE
to a larger valueLAMELLAR_MEM_SIZE * number of processes
Crates listed in Cargo.toml
Optional: Lamellar requires the following dependencies if wanting to run in a distributed HPC environment: the rofi lamellae is enabled by adding "enable-rofi" to features either in cargo.toml or the command line when building. i.e. cargo build --features enable-rofi Rofi can either be built from source and then setting the ROFI_DIR environment variable to the Rofi install directory, or by letting the rofi-sys crate build it automatically.
At the time of release, Lamellar has been tested with the following external packages:
GCC | CLANG | ROFI | OFI | IB VERBS | MPI | SLURM |
---|---|---|---|---|---|---|
7.1.0 | 8.0.1 | 0.1.0 | 1.20 | 1.13 | mvapich2/2.3a | 17.02.7 |
In the following, assume a root directory ${ROOT}
cd ${ROOT} && git clone https://github.com/pnnl/lamellar-runtime
Select Lamellae to use:
Compile Lamellar lib and test executable (feature flags can be passed to command line instead of specifying in cargo.toml)
cargo build (--release) (--features enable-rofi)
executables located at ./target/debug(release)/test
cargo build --examples (--release) (--features enable-rofi)
executables located at ./target/debug(release)/examples/
Note: we do an explicit build instead of cargo run --examples
as they are intended to run in a distriubted envrionment (see TEST section below.)
Lamellar is still under development, thus not all intended features are yet implemented.
Current Team Members
Ryan Friese - ryan.friese@pnnl.gov
Roberto Gioiosa - roberto.gioiosa@pnnl.gov
Erdal Mutlu - erdal.mutlu@pnnl.gov
Joseph Cottam - joseph.cottam@pnnl.gov
Greg Roek - gregory.roek@pnnl.gov
Past Team Members
Mark Raugas - mark.raugas@pnnl.gov
This project is licensed under the BSD License - see the LICENSE.md file for details.
This work was supported by the High Performance Data Analytics (HPDA) Program at Pacific Northwest National Laboratory (PNNL), a multi-program DOE laboratory operated by Battelle.