Crates.io | light_phylogeny |
lib.rs | light_phylogeny |
version | 2.4.3 |
source | src |
created_at | 2021-04-15 14:00:43.46665 |
updated_at | 2024-10-21 12:38:22.887993 |
description | Methods and functions for phylogeny. |
homepage | https://github.com/simonpenel/light_phylogeny/wiki |
repository | https://github.com/simonpenel/light_phylogeny |
max_upload_size | |
id | 384852 |
size | 4,291,210 |
You may :
Read, build, modify and displays as svg reconciled phylogenetic trees.
Drawing reconciled phylogenetic trees allowing 1, 2 or 3 reconciliation levels
Build a svg representation of a phylogenetic reconciled (or not) tree with events (loss, duplication, speciation, transfer).
Read a recphyloxml file: create a svg representation of the gene tree(s) and the associated species tree.
Read 2 nested recphyloxml files: create svg representations of the gene tree(s), the associated symbiot tree(s) and the associated species tree.
Read a newick or phyloxml file: create a svg representation of the gene tree only.
You may use light_phylogeny functions and methods to build, manipulate, modify or draw phylogenetic trees.
You may use the "thirdkind" software https://github.com/simonpenel/thirdkind/wiki based on 'light_phylogeny' to represent trees with 1, 2 or 3 reconciliation levels
Keywords: phylogeny, reconciled trees, phylogenetic trees
phyloXML, recPhyloXML, rooted newick (NHX tags will not be considered).
For output examples, please see the thirdkind home page https://github.com/simonpenel/thirdkind/wiki
https://crates.io/crates/light_phylogeny
You may find code examples in the "examples" directory.
Simple Rust example: read a newick.txt file and creates the svg
use light_phylogeny::{ArenaTree,Options,Config,read_newick,phyloxml_processing};
fn main() {
let mut tree: ArenaTree<String> = ArenaTree::default();
let options: Options = Options::new();
let config: Config = Config::new();
read_newick("examples/newick.txt".to_string(), &mut tree);
phyloxml_processing(&mut tree, &options, &config,"read_newick-clado.svg".to_string());
println!("Please open output file 'read_newick-clado.svg' with your browser");
let mut tree: ArenaTree<String> = ArenaTree::default();
let mut options: Options = Options::new();
options.real_length_flag = true;
let config: Config = Config::new();
read_newick("examples/newick.txt".to_string(), &mut tree);
phyloxml_processing(&mut tree, &options, &config,"read_newick-real-clado.svg".to_string());
println!("Please open output file 'read_newick-real-clado.svg' with your browser");
}
Some newick examples are available here : https://github.com/simonpenel/light_phylogeny/tree/master/newick_examples
Simple Rust example:build a gene tree, creates the svg, modiy the tree and creates a new svg:
use light_phylogeny::{ArenaTree,Options,Config,Event,add_child,move_child,phyloxml_processing,
summary,reset_pos};
fn main() {
let mut tree: ArenaTree<String> = ArenaTree::default();
let mut options: Options = Options::new();
let config: Config = Config::new();
// Create a new node root
let root = tree.new_node("root".to_string());
// Create new nodes
let a1 = tree.new_node("a1".to_string());
let a2 = tree.new_node("a2".to_string());
let a = tree.new_node("a".to_string());
let b1 = tree.new_node("b1".to_string());
let b2 = tree.new_node("b2".to_string());
let b = tree.new_node("b".to_string());
let c = tree.new_node("c".to_string());
let d = tree.new_node("d".to_string());
println!("Initial tree :");
summary(&mut tree);
// Set names
tree.arena[root].name = "MyRoot".to_string();
tree.arena[a].name = "Gene A".to_string();
tree.arena[a1].name = "Gene A1".to_string();
tree.arena[a2].name = "Gene A2".to_string();
tree.arena[b].name = "Gene B".to_string();
tree.arena[b1].name = "Gene B1".to_string();
tree.arena[b2].name = "Gene B2".to_string();
tree.arena[c].name = "Gene C".to_string();
tree.arena[d].name = "Gene D".to_string();
println!("");
println!("Tree after name attribution:");
summary(&mut tree);
// Set hierarchy
// a1 and a2 are children of a
add_child(&mut tree,a,a1);
add_child(&mut tree,a,a2);
// a1 and a2 are children of a
add_child(&mut tree,b,b1);
add_child(&mut tree,b,b2);
// a and b are children of c
add_child(&mut tree,c,a);
add_child(&mut tree,c,b);
// c and d are children of root
add_child(&mut tree,root,c);
add_child(&mut tree,root,d);
println!("");
println!("Tree after hierarchy attribution:");
summary(&mut tree);
// Display internal nodes
options.gene_internal = true ;
phyloxml_processing(&mut tree, &options, &config,"modify_tree_ini.svg".to_string());
println!("Add a loss to C");
let loss = tree.new_node("loss".to_string());
tree.arena[loss].name = "Loss".to_string();
tree.arena[loss].e = Event::Loss;
add_child(&mut tree,c,loss);
println!("Add a node up to B");
let add = tree.new_node("add".to_string());
tree.arena[add].name = "Added up to B".to_string();
println!("Move A to new node ");
move_child(&mut tree, a, add);
println!("Move B to new node ");
move_child(&mut tree, b, add);
println!("Move new node to C ");
add_child(&mut tree, c, add);
println!("Tree after hierarchy modification:");
summary(&mut tree);
reset_pos(&mut tree);
phyloxml_processing(&mut tree, &options, &config,"modify_tree_mod.svg".to_string());
println!("Please open output files 'modify_tree_ini.svg' and 'modify_tree_mod.svg' with your browser");
println!("OK.");
}
You may try the codes in the 'examples' directory:
cargo run --example read_newick
cargo run --example build_tree
cargo run --example lca
cargo run --example modify_tree
Read and display a reconciled tree from a recPhyloXML file:
https://github.com/simonpenel/light_phylogeny/blob/master/examples/read_recphyloxml.rs
See Rust documentation : https://docs.rs/light_phylogeny/
https://github.com/simonpenel/thirdkind
See http://phylariane.univ-lyon1.fr/recphyloxml/
recPhyloXML paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198865/
phyloXML paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774328/
Possible problem with the obsolete version of recPhyloXML format (speciationLoss is supported, speciationOutLoss and speciationOut are not supported yet)
"Arena" Tree structure is inspired by the code proposed here
Tree drawing algorithms are well explained here and here