linfa-bayes

Crates.iolinfa-bayes
lib.rslinfa-bayes
version
sourcesrc
created_at2021-01-20 18:59:12.997964
updated_at2025-01-14 15:41:49.505536
descriptionCollection of Naive Bayes Algorithms
homepage
repositoryhttps://github.com/rust-ml/linfa
max_upload_size
id344540
Cargo.toml error:TOML parse error at line 18, column 1 | 18 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include`
size0
wg (github:rust-ml:wg)

documentation

README

Naive Bayes

linfa-bayes provides pure Rust implementations of Naive Bayes algorithms for the Linfa toolkit.

The Big Picture

linfa-bayes is a crate in the linfa ecosystem, an effort to create a toolkit for classical Machine Learning implemented in pure Rust, akin to Python's scikit-learn.

Current state

linfa-bayes currently provides an implementation of the following methods:

  • Gaussian Naive Bayes ([GaussianNb])
  • Multinomial Naive Nayes ([MultinomialNb]))

Examples

You can find examples in the examples/ directory. To run Gaussian Naive Bayes example, use:

$ cargo run --example winequality --release
Show source code
use linfa::metrics::ToConfusionMatrix;
use linfa::traits::{Fit, Predict};
use linfa_bayes::{GaussianNb, Result};

// Read in the dataset and convert targets to binary data
let (train, valid) = linfa_datasets::winequality()
    .map_targets(|x| if *x > 6 { "good" } else { "bad" })
    .split_with_ratio(0.9);

// Train the model
let model = GaussianNb::params().fit(&train)?;

// Predict the validation dataset
let pred = model.predict(&valid);

// Construct confusion matrix
let cm = pred.confusion_matrix(&valid)?;

// classes    | bad        | good      
// bad        | 130        | 12        
// good       | 7          | 10    
//
// accuracy 0.8805031, MCC 0.45080978
println!("{:?}", cm);
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
# Result::Ok(())

To run Multinomial Naive Bayes example, use:

$ cargo run --example winequality_multinomial --release
Show source code
use linfa::metrics::ToConfusionMatrix;
use linfa::traits::{Fit, Predict};
use linfa_bayes::{MultinomialNb, Result};

// Read in the dataset and convert targets to binary data
let (train, valid) = linfa_datasets::winequality()
    .map_targets(|x| if *x > 6 { "good" } else { "bad" })
    .split_with_ratio(0.9);

// Train the model
let model = MultinomialNb::params().fit(&train)?;

// Predict the validation dataset
let pred = model.predict(&valid);

// Construct confusion matrix
let cm = pred.confusion_matrix(&valid)?;
// classes    | bad        | good      
// bad        | 88         | 54        
// good       | 10         | 7         

// accuracy 0.5974843, MCC 0.02000631
println!("{:?}", cm);
println!("accuracy {}, MCC {}", cm.accuracy(), cm.mcc());
# Result::Ok(())
Commit count: 335

cargo fmt