linfa-preprocessing

Crates.iolinfa-preprocessing
lib.rslinfa-preprocessing
version
sourcesrc
created_at2021-04-28 15:45:13.494784+00
updated_at2025-02-01 17:44:49.442353+00
descriptionA Machine Learning framework for Rust
homepage
repositoryhttps://github.com/rust-ml/linfa
max_upload_size
id390613
Cargo.toml error:TOML parse error at line 18, column 1 | 18 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include`
size0
wg (github:rust-ml:wg)

documentation

README

Preprocessing

The Big Picture

linfa-preprocessing is a crate in the linfa ecosystem, an effort to create a toolkit for classical Machine Learning implemented in pure Rust, akin to Python's scikit-learn.

Current state

linfa-preprocessing provides a pure Rust implementation of:

  • Standard scaling
  • Min-max scaling
  • Max Abs Scaling
  • Normalization
  • Count vectorization
  • TfIdf vectorization
  • Whitening

Examples

There are various usage examples in the examples/ directory. To run, use:

$ cargo run --release --example count_vectorization
$ cargo run --release --example tfidf_vectorization
$ cargo run --release --example scaling
$ cargo run --release --example whitening

BLAS/Lapack backend

See this section to enable an external BLAS/LAPACK backend.

License

Dual-licensed to be compatible with the Rust project.

Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0 or the MIT license http://opensource.org/licenses/MIT, at your option. This file may not be copied, modified, or distributed except according to those terms.

Commit count: 335

cargo fmt