Crates.io | linfa-tsne |
lib.rs | linfa-tsne |
version | |
source | src |
created_at | 2021-04-28 19:45:19.590925+00 |
updated_at | 2025-01-14 16:01:07.072769+00 |
description | Barnes-Hut t-distributed stochastic neighbor embedding |
homepage | |
repository | https://github.com/rust-ml/linfa |
max_upload_size | |
id | 390738 |
Cargo.toml error: | TOML parse error at line 18, column 1 | 18 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include` |
size | 0 |
linfa-tsne
provides a pure Rust implementation of exact and Barnes-Hut t-SNE.
linfa-tsne
is a crate in the linfa
ecosystem, an effort to create a toolkit for classical Machine Learning implemented in pure Rust, akin to Python's scikit-learn
.
linfa-tsne
currently provides an implementation of the following methods:
It wraps the bhtsne crate, all kudos to them.
There is an usage example in the examples/
directory. To run it, do:
$ cargo run --example tsne
You have to install the gnuplot
library for plotting. Also take a look at the README to see what BLAS/LAPACK backends are possible.
Dual-licensed to be compatible with the Rust project.
Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0 or the MIT license http://opensource.org/licenses/MIT, at your option. This file may not be copied, modified, or distributed except according to those terms.