| Crates.io | llm-test-bench-datasets |
| lib.rs | llm-test-bench-datasets |
| version | 0.1.0 |
| created_at | 2025-11-04 20:07:16.899542+00 |
| updated_at | 2025-11-04 20:07:16.899542+00 |
| description | Dataset management and utilities for LLM Test Bench - load, validate, and manage test datasets |
| homepage | https://github.com/globalbusinessadvisors/llm-test-bench |
| repository | https://github.com/globalbusinessadvisors/llm-test-bench |
| max_upload_size | |
| id | 1916890 |
| size | 99,680 |
A comprehensive, production-ready framework for benchmarking, testing, and evaluating Large Language Models
Features β’ Quick Start β’ Documentation β’ Architecture β’ Contributing
LLM Test Bench is a powerful, enterprise-grade framework built in Rust for comprehensive testing, benchmarking, and evaluation of Large Language Models. It provides a unified interface to test multiple LLM providers, evaluate responses with sophisticated metrics, and visualize results through an intuitive dashboard.
OpenAI (27 models)
gpt-5
gpt-4.5, gpt-4.5-2025-02-27
gpt-4.1, gpt-4.1-2025-04
gpt-4o, gpt-4o-2024-11-20, gpt-4o-2024-08-06, gpt-4o-2024-05-13
gpt-4o-mini, gpt-4o-mini-2024-07-18
o1, o1-preview, o1-preview-2024-09-12, o1-mini, o1-mini-2024-09-12, o3-mini
gpt-4-turbo, gpt-4-turbo-2024-04-09, gpt-4-turbo-preview
gpt-4-0125-preview, gpt-4-1106-preview
gpt-4, gpt-4-0613
gpt-3.5-turbo, gpt-3.5-turbo-0125, gpt-3.5-turbo-1106
Anthropic (15 models)
claude-opus-4, claude-opus-4-20250501
claude-sonnet-4.5, claude-sonnet-4.5-20250901
claude-sonnet-4, claude-sonnet-4-20250514
claude-3-5-sonnet-latest, claude-3-5-sonnet-20241022, claude-3-5-sonnet-20240620
claude-3-5-haiku-latest, claude-3-5-haiku-20241022
claude-3-opus-latest, claude-3-opus-20240229
claude-3-sonnet-20240229
claude-3-haiku-20240307
Google Gemini (16 models)
gemini-2.5-pro
gemini-2.5-computer-use, gemini-2.5-computer-use-20251007
gemini-2.0-flash-exp, gemini-2.0-flash-thinking-exp-1219
gemini-1.5-pro, gemini-1.5-pro-latest, gemini-1.5-pro-002, gemini-1.5-pro-001
gemini-1.5-flash, gemini-1.5-flash-latest, gemini-1.5-flash-002
gemini-1.5-flash-001, gemini-1.5-flash-8b
gemini-pro, gemini-pro-vision
Mistral AI (7 models)
mistral-code, mistral-code-20250604
magistral-large, magistral-medium, magistral-small
voxtral-small, voxtral-small-20250701
Additional Providers
# Clone the repository
git clone https://github.com/globalbusinessadvisors/llm-test-bench.git
cd llm-test-bench
# Build the project
cargo build --release
# Install CLI globally (optional)
cargo install --path cli
Set up your API keys as environment variables:
# OpenAI
export OPENAI_API_KEY="sk-..."
# Anthropic
export ANTHROPIC_API_KEY="sk-ant-..."
# Google
export GOOGLE_API_KEY="..."
# AWS Bedrock
export AWS_ACCESS_KEY_ID="..."
export AWS_SECRET_ACCESS_KEY="..."
export AWS_REGION="us-east-1"
Or create a .env file:
cp .env.example .env
# Edit .env with your API keys
# Run a simple benchmark with GPT-5
llm-test-bench bench --provider openai --model gpt-5 --prompt "Explain quantum computing"
# Test with Claude Opus 4
llm-test-bench bench --provider anthropic --model claude-opus-4 --prompt "Code review this function"
# Use Gemini 2.5 Computer Use
llm-test-bench bench --provider google --model gemini-2.5-computer-use --prompt "Automate this task"
# Compare multiple models across providers
llm-test-bench compare \
--models "openai:gpt-5,anthropic:claude-opus-4,google:gemini-2.5-pro" \
--prompt "Write a Python function to sort a list"
# Benchmark code models
llm-test-bench bench --provider mistral --model mistral-code --prompt "Implement binary search"
# Analyze results
llm-test-bench analyze --results benchmark_results.json
# Launch interactive dashboard
llm-test-bench dashboard --port 8080
# Optimize model selection
llm-test-bench optimize \
--metric latency \
--max-cost 0.01 \
--dataset prompts.json
# Using Docker Compose (includes PostgreSQL, Redis, Prometheus)
docker-compose up -d
# Access the dashboard
open http://localhost:8080
# View metrics
open http://localhost:9090 # Prometheus
LLM Test Bench follows a clean, modular architecture:
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β CLI Layer β
β bench β compare β analyze β dashboard β optimize β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Core Library (core/) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β’ Providers β’ Evaluators β’ Orchestration β
β β’ Analytics β’ Visualization β’ Monitoring β
β β’ Distributed β’ Plugins β’ Multimodal β
β β’ API Server β’ Database β’ Configuration β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β External Services β
β LLM APIs β PostgreSQL β Redis β Prometheus β S3 β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
llm-test-bench/
βββ cli/ # Command-line interface
β βββ src/
β β βββ commands/ # CLI commands (bench, compare, etc.)
β β βββ main.rs
β βββ tests/ # Integration tests
βββ core/ # Core library
β βββ src/
β β βββ providers/ # LLM provider implementations
β β βββ evaluators/ # Evaluation metrics
β β βββ orchestration/ # Model routing & comparison
β β βββ visualization/ # Dashboard & charts
β β βββ api/ # REST/GraphQL/WebSocket
β β βββ distributed/ # Cluster coordination
β β βββ monitoring/ # Metrics & health checks
β β βββ plugins/ # Plugin system
β β βββ multimodal/ # Image/audio/video
β β βββ analytics/ # Statistics & optimization
β β βββ config/ # Configuration
β βββ tests/ # Unit & integration tests
βββ docs/ # Documentation
βββ examples/ # Usage examples
βββ plans/ # Architecture & planning docs
βββ docker-compose.yml # Docker deployment
Compare multiple LLM providers to choose the best model for your use case based on quality, cost, and latency.
Systematic testing of LLM applications with rich assertions and automated evaluation metrics.
Measure and track latency, throughput, and cost across different models and configurations.
Ensure model updates don't degrade quality with historical comparison and automated alerts.
Identify the most cost-effective model that meets your quality requirements.
Rapid prototyping and comparison of different prompts, models, and parameters.
We welcome contributions! Please see our Contributing Guide for details.
# Clone and build
git clone https://github.com/globalbusinessadvisors/llm-test-bench.git
cd llm-test-bench
cargo build
# Run tests
cargo test
# Run with logging
RUST_LOG=debug cargo run -- bench --help
# Format code
cargo fmt
# Lint
cargo clippy -- -D warnings
This project is licensed under the MIT License - see the LICENSE file for details.
β Star us on GitHub β it motivates us a lot!
Report Bug β’ Request Feature β’ Documentation
Made with β€οΈ by the LLM Test Bench Team