llmsim

Crates.iollmsim
lib.rsllmsim
version0.2.0
created_at2026-01-10 04:20:11.58742+00
updated_at2026-01-18 00:30:08.913565+00
descriptionLLM Traffic Simulator - A lightweight, high-performance LLM API simulator
homepage
repositoryhttps://github.com/llmsim/llmsim
max_upload_size
id2033446
size1,679,753
Mykhailo Chalyi (Mike Chaliy) (chaliy)

documentation

README

LLMSim

LLM Traffic Simulator - A lightweight, high-performance LLM API simulator for load testing, CI/CD, and local development.

Overview

LLMSim replicates realistic LLM API behavior without running actual models. It solves common challenges when testing LLM-integrated applications:

  • Cost: Real API calls during load tests are expensive
  • Rate Limits: Production APIs prevent realistic load testing
  • Reproducibility: Real models produce variable responses
  • Traffic Realism: LLM responses have unique characteristics (streaming, variable latency, token-based billing)

Features

  • Multi-Provider API Support - OpenAI Chat Completions and OpenResponses APIs
  • Realistic Latency Simulation - Time-to-first-token (TTFT) and inter-token delays with normal distribution
  • Streaming Support - Server-Sent Events (SSE) for both OpenAI and OpenResponses streaming formats
  • Accurate Token Counting - Uses tiktoken-rs (OpenAI's tokenizer implementation)
  • Error Injection - Rate limits (429), server errors (500/503), timeouts
  • Multiple Response Generators - Lorem ipsum, echo, fixed, random, sequence
  • Model-Specific Profiles - GPT-5, GPT-4, Claude, Gemini latency profiles
  • Real-time Stats Dashboard - TUI dashboard with live metrics (requests, tokens, latency, errors)
  • Stats API - JSON endpoint for programmatic access to server metrics

Installation

cargo install llmsim

Demo

Console UI Demo

Usage

CLI Server

# Start with defaults (port 8080, lorem generator)
llmsim serve

# Start with real-time stats dashboard (TUI)
llmsim serve --tui

# All options
llmsim serve \
  --port 8080 \
  --host 0.0.0.0 \
  --generator lorem \
  --target-tokens 150 \
  --tui

# Using config file
llmsim serve --config config.yaml

Stats Dashboard

The --tui flag launches an interactive terminal dashboard showing real-time metrics:

  • Requests: Total, active, streaming vs non-streaming, requests/sec
  • Tokens: Prompt, completion, total, tokens/sec
  • Latency: Average, min, max response times
  • Errors: Total errors, rate limits (429), server errors (5xx), timeouts
  • Charts: RPS and token rate sparklines, model distribution

Controls: q to quit, r to force refresh.

As a Library

use llmsim::{
    openai::{ChatCompletionRequest, Message},
    generator::LoremGenerator,
    latency::LatencyProfile,
};

// Create a latency profile
let latency = LatencyProfile::gpt5();

// Count tokens
let tokens = llmsim::count_tokens("Hello, world!", "gpt-5").unwrap();

// Generate responses
let generator = LoremGenerator::new(100);
let response = generator.generate(&request);

API Endpoints

OpenAI API (/openai/v1/...)

Endpoint Method Description
/openai/v1/chat/completions POST Chat completions (streaming & non-streaming)
/openai/v1/models GET List available models
/openai/v1/models/{model_id} GET Get specific model details
/openai/v1/responses POST Responses API (streaming & non-streaming)

When using OpenAI SDKs, set the base URL to http://localhost:8080/openai/v1.

OpenResponses API (/openresponses/v1/...)

OpenResponses is an open-source specification for building multi-provider, interoperable LLM interfaces.

Endpoint Method Description
/openresponses/v1/responses POST Create response (streaming & non-streaming)

LLMSim endpoints

Endpoint Method Description
/health GET Health check
/llmsim/stats GET Real-time server statistics (JSON)

Configuration

YAML Config File

server:
  port: 8080
  host: "0.0.0.0"

latency:
  profile: "gpt5"
  # Custom values (optional):
  # ttft_mean_ms: 600
  # ttft_stddev_ms: 150
  # tbt_mean_ms: 40
  # tbt_stddev_ms: 12

response:
  generator: "lorem"
  target_tokens: 100

errors:
  rate_limit_rate: 0.01
  server_error_rate: 0.001
  timeout_rate: 0.0
  timeout_after_ms: 30000

models:
  available:
    - "gpt-5"
    - "gpt-5-mini"
    - "gpt-4o"
    - "claude-opus"

Supported Models

Family Models
GPT-5 gpt-5, gpt-5-mini, gpt-5.1, gpt-5.2, gpt-5-codex
O-Series o3, o3-mini, o4, o4-mini
GPT-4 gpt-4, gpt-4-turbo, gpt-4o, gpt-4o-mini, gpt-4.1
Claude claude-opus, claude-sonnet, claude-haiku (with versions)
Gemini gemini-pro

Latency Profiles

Profile TTFT Mean TBT Mean
gpt-5 600ms 40ms
gpt-5-mini 300ms 20ms
gpt-4 800ms 50ms
gpt-4o 400ms 25ms
o-series 2000ms 30ms
claude-opus 1000ms 60ms
claude-sonnet 500ms 30ms
claude-haiku 200ms 15ms
instant 0ms 0ms
fast 10ms 1ms

Use Cases

  • Load Testing - Simulate thousands of concurrent LLM requests
  • CI/CD Pipelines - Fast, deterministic tests for LLM integrations
  • Local Development - Develop without API keys or costs
  • Chaos Engineering - Test behavior under failure scenarios
  • Cost Estimation - Estimate token usage before production

Requirements

  • Rust 1.83+ (for building from source)
  • OR Docker

License

MIT License - see LICENSE for details.

Contributing

See CONTRIBUTING.md for contribution guidelines.

Commit count: 0

cargo fmt