Crates.io | lockstitch |
lib.rs | lockstitch |
version | 0.25.2 |
source | src |
created_at | 2022-10-28 15:31:09.981142 |
updated_at | 2024-02-03 00:00:49.883265 |
description | Lockstitch is an incremental, stateful cryptographic primitive for symmetric-key cryptographic operations in complex protocols. |
homepage | https://github.com/codahale/lockstitch |
repository | |
max_upload_size | |
id | 700488 |
size | 185,818 |
Lockstitch is an incremental, stateful cryptographic primitive for symmetric-key cryptographic operations (e.g. hashing, encryption, message authentication codes, and authenticated encryption) in complex protocols. Inspired by TupleHash, STROBE, Noise Protocol's stateful objects, Merlin transcripts, and Xoodyak's Cyclist mode, Lockstitch uses TurboSHAKE128, an eXtendable Output Function (XOF), and AEGIS-128L, an authenticated cipher, to provide 100+ Gb/sec performance on modern processors at a 128-bit security level.
⚠️ You should not use this. ⚠️
Neither the design nor the implementation of this library have been independently evaluated. The
design is documented in design.md
; read it and see if the arguments therein are
convincing.
In addition, there is absolutely no guarantee of backwards compatibility.
A Lockstitch protocol is a stateful object which has five different operations:
Init
: Initializes a protocol with a domain separation string.Mix
: Mixes a piece of data into the protocol's transcript, making all future outputs dependent
on it.Derive
: Outputs bytes of pseudo-random data dependent on the protocol's transcript.Encrypt
/Decrypt
: Encrypts and decrypts data using the protocol's transcript as the key.Seal
/Open
: Encrypts and decrypts data with authentication using the protocol's transcript as
the key.Using these operations, one can construct a wide variety of symmetric-key constructions.
Lockstitch is used to compose cryptographic protocols.
For example, we can create message digests:
fn digest(message: &[u8]) -> [u8; 32] {
let mut md = lockstitch::Protocol::new("com.example.md");
md.mix("message", message);
md.derive_array("digest")
}
assert_eq!(digest(b"this is a message"), digest(b"this is a message"));
assert_ne!(digest(b"this is a message"), digest(b"this is another message"));
We can create message authentication codes:
fn mac(key: &[u8], message: &[u8]) -> [u8; 16] {
let mut mac = lockstitch::Protocol::new("com.example.mac");
mac.mix("key", key);
mac.mix("message", message);
mac.derive_array("tag")
}
assert_eq!(mac(b"a key", b"a message"), mac(b"a key", b"a message"));
assert_ne!(mac(b"a key", b"a message"), mac(b"another key", b"a message"));
assert_ne!(mac(b"a key", b"a message"), mac(b"a key", b"another message"));
We can even create authenticated encryption:
fn aead_encrypt(key: &[u8], nonce: &[u8], ad: &[u8], plaintext: &[u8]) -> Vec<u8> {
let mut out = vec![0u8; plaintext.len() + lockstitch::TAG_LEN];
out[..plaintext.len()].copy_from_slice(plaintext);
let mut aead = lockstitch::Protocol::new("com.example.aead");
aead.mix("key", key);
aead.mix("nonce", nonce);
aead.mix("ad", ad);
aead.seal("message", &mut out);
out
}
fn aead_decrypt(key: &[u8], nonce: &[u8], ad: &[u8], ciphertext: &[u8]) -> Option<Vec<u8>> {
let mut ciphertext = ciphertext.to_vec();
let mut aead = lockstitch::Protocol::new("com.example.aead");
aead.mix("key", key);
aead.mix("nonce", nonce);
aead.mix("ad", ad);
aead.open("message", &mut ciphertext).map(|p| p.to_vec())
}
let plaintext = b"a message".to_vec();
let ciphertext = aead_encrypt(b"a key", b"a nonce", b"some data", &plaintext);
assert_eq!(aead_decrypt(b"a key", b"a nonce", b"some data", &ciphertext), Some(plaintext));
assert_eq!(aead_decrypt(b"another key", b"a nonce", b"some data", &ciphertext), None);
assert_eq!(aead_decrypt(b"a key", b"another nonce", b"some data", &ciphertext), None);
assert_eq!(aead_decrypt(b"a key", b"a nonce", b"some other data", &ciphertext), None);
let mut bad_ciphertext = ciphertext.to_vec();
bad_ciphertext[5] ^= 1; // flip one bit
assert_eq!(aead_decrypt(b"a key", b"a nonce", b"some data", &bad_ciphertext), None);
asm
: Enables hand-coded assembly for TurboSHAKE128 for aarch64
. Enabled by default.docs
: Enables the docs-only perf
and design
modules.std
: Enables features based on the Rust standard library. Enabled by default.zeroize
: Enables support for zeroizing protocol state. Enabled by default.Lockstitch's AEGIS-128L implementation benefit significantly from the use of specific CPU instructions.
x86
/x86_64
On x86
/x86_64
CPUs, Lockstitch achieves its best performance with the aes
and ssse3
target
features enabled.
To compile a binary with support for these features, create a .cargo/config.toml
file with the
following:
[build]
rustflags = ["-C", "target-feature=+aes,+ssse3"]
Or use the following RUSTFLAGS
environment variable:
export RUSTFLAGS="-C target-feature=+aes,+ssse3"
aarch64
On aarch64-darwin-apple
(i.e. macOS), the ARMv8-A cryptography instructions and NEON vector
instructions are enabled by default. On other targets (e.g. aarch64-unknown-linux-gnu
), the sha3
and aes
target features should be enabled.
For other platforms, the portable
crate feature provides a very slow but fully portable AES
implementation.
For more information on the design of Lockstitch, see design.md
.
For more information on performance, see perf.md
.
Copyright © 2023 Coda Hale, Frank Denis
AEGIS-128L implementation adapted from rust-aegis.
Distributed under the MIT License.