memory-wiki

Crates.iomemory-wiki
lib.rsmemory-wiki
version0.2.0
created_at2025-11-27 18:38:36.123465+00
updated_at2025-11-27 18:38:36.123465+00
descriptionA local-first, semantic knowledge base and MCP server for LLMs.
homepage
repositoryhttps://github.com/Algiras/memory-wiki
max_upload_size
id1954230
size843,791
Algimantas Krasauskas (Algiras)

documentation

README

Memory Wiki MCP Server

A semantic knowledge base with graph relations, powered by local embeddings. Built with Rust for high performance and low memory usage.

Crates.io License: MIT

Features

Core

  • Semantic Search: Vector embeddings with fastembed (ONNX-based, runs locally)
  • Graph Relations: Link entries with typed relations (references, depends_on, etc.)
  • Collections: Organize entries into collections
  • Persistence: All data stored locally in JSON files
  • Multi-Root Storage: Per-workspace isolation with separate data stores

Search

  • Hybrid Search: Combines semantic similarity with BM25 keyword matching
  • Time-Based Search: Natural language queries like "yesterday", "last week"
  • Reranking: Optional cross-encoder for improved accuracy
  • HyDE: Hypothetical Document Embeddings for better retrieval
  • Chain-of-Thought Retrieval: Multi-step reasoning with iterative retrieval

Advanced Retrieval (NEW!)

  • Multi-Perspective Exploration: GraphRAG, RAPTOR-style hierarchical retrieval
    • temporal - How knowledge evolved over time
    • relational - Graph-based multi-hop connections
    • hierarchical - Abstract concepts to specific details
    • entity - Focus on mentioned entities
    • contextual - Group by themes/collections
    • summary - CAG-powered hierarchical summaries
    • hyde - Hypothetical Document Embeddings
    • reason - Chain-of-Thought retrieval
    • reflect - Self-reflection & memory consolidation
  • CAG Engine: Context-Augmented Generation with cached summaries
  • Self-Reflection: Memory consolidation and gap analysis

Analysis

  • Entity Extraction: Automatically detect people, technologies, concepts
  • Auto-Tagging: Tag entries based on extracted entities
  • Duplicate Detection: Find similar/duplicate entries
  • Entry Merging: Consolidate duplicate information

Ingestion

  • Document Ingestion: Smart chunking for markdown, code, and text files
  • File Scheduler: Track and auto-update files on changes
  • Git Metadata: Automatically capture git branch, commit, and file context
  • Startup Indexing: Automatically index directories via environment variables
  • Background Indexing: Async directory scanning with progress tracking
  • LLM-Powered Indexing: Optional LLM analysis for summaries, entities, relationships

Web UI (NEW!)

  • Knowledge Graph Visualization: Interactive D3.js graph with zoom/pan
  • Perspectives Panel: Explore memories from different angles
  • Search Interface: Semantic, hybrid, and time-based search
  • Entry Management: Create, edit, delete entries
  • Real-time Stats: Dashboard with knowledge base metrics

Installation

From crates.io

cargo install memory-wiki

From source

git clone https://github.com/Algiras/memory-wiki
cd memory-wiki/memory-wiki
cargo build --release

With LLM support

cargo build --release --features llm

Configuration

Copy .env.example to .env and customize:

# Key settings
MEMORY_WIKI_DATA_DIR=data
MEMORY_WIKI_MODEL=bge-small-en-v1.5
MEMORY_WIKI_INDEX_DIRS=/path/to/notes,/path/to/docs
MEMORY_WIKI_ENABLE_RERANKER=true

See .env.example for all options.

Environment Variables

Core Configuration

Variable Description Default
MEMORY_WIKI_DATA_DIR Directory for storing data data
MEMORY_WIKI_PORT Port for the web interface 3001
MEMORY_WIKI_MODEL Embedding model to use bge-small-en-v1.5
RUST_LOG Set logging level info

Indexing & Processing

Variable Description Default
MEMORY_WIKI_INDEX_DIRS Comma-separated directories to index on startup -
MEMORY_WIKI_INDEX_PATTERNS File patterns to index *.md,*.txt,*.rs
MEMORY_WIKI_CHUNK_SIZE Size of text chunks for embedding 1000
MEMORY_WIKI_CHUNK_OVERLAP Overlap between chunks 200
MEMORY_WIKI_MAX_FILE_SIZE Max file size to process in bytes 10MB

LLM Configuration (for background indexing)

Variable Description Default
OPENROUTER_API_KEY OpenRouter API key (recommended) -
OPENROUTER_MODEL OpenRouter model anthropic/claude-3.5-haiku
OPENAI_API_KEY OpenAI API key -
OPENAI_BASE_URL Custom OpenAI-compatible endpoint -
OPENAI_MODEL OpenAI model gpt-4o-mini
ANTHROPIC_API_KEY Anthropic API key -
OLLAMA_HOST Ollama server URL http://localhost:11434
OLLAMA_MODEL Ollama model (auto-detected)

Feature Flags

Variable Description Default
MEMORY_WIKI_ENABLE_RERANKER Enable BGE reranking for better search true
MEMORY_WIKI_ENABLE_SCHEDULER Enable background file watching true
MEMORY_WIKI_SIMILARITY_THRESHOLD Threshold for duplicate/similarity detection 0.85
MEMORY_WIKI_COLLECTION_DEFAULT Default collection name general
MEMORY_WIKI_DISABLE_GIT_METADATA Disable git metadata detection false
MEMORY_WIKI_SAMPLING_MODEL Model hint for MCP sampling (e.g., claude-3-5-sonnet) -

Multi-Root Storage

Variable Description Default
MEMORY_WIKI_ROOTS_ENABLED Enable per-workspace root isolation true
MEMORY_WIKI_MAX_ROOT_SIZE_MB Max storage size per root in MB 100

Usage

MCP Mode (for Claude Desktop, Cursor, etc.)

./target/release/memory-wiki

Add to your MCP client config:

{
  "mcpServers": {
    "memory-wiki": {
      "command": "/path/to/memory-wiki",
      "args": []
    }
  }
}

Web UI Mode

./target/release/memory-wiki --web --port 3001

Then open http://localhost:3001

API Overview

Memory Wiki exposes a set of Simplified Tools designed for easy interaction with LLMs. For detailed documentation, see docs/api.md.

Core Tools

Tool Description
memory Manage entries (store, get, update, delete, list)
search Search knowledge (semantic, hybrid, time-based)
graph Manage relations (link, path, related, hubs)
ask Smart interactive assistant (remember, find, summarize, connect, review)
stores Multi-root storage management (list, switch, global, info)
perspective Multi-perspective exploration (temporal, relational, hierarchical, etc.)

File & Analysis Tools

Tool Description
files Ingest and watch files/directories
analyze Extract entities, find duplicates, auto-tag, merge
collections Manage collections (list, create, delete)
stats Get knowledge base statistics
export Export data to JSON

Web API Endpoints

Endpoint Description
GET /api/entries List all entries
POST /api/entries Create new entry
GET /api/search?query=... Semantic search
GET /api/graph Get knowledge graph
GET /api/perspective/:mode Perspective exploration
POST /api/index/start Start background indexing
GET /api/index/status Get indexing progress

New Features

Multi-Perspective Exploration

Explore your knowledge base from different angles using the perspective tool:

{
  "tool": "perspective",
  "arguments": {
    "mode": "relational",
    "query": "machine learning",
    "depth": 2
  }
}

Available modes:

  • temporal: Track knowledge evolution over time
  • relational: GraphRAG-style multi-hop exploration
  • hierarchical: RAPTOR-style abstraction levels
  • entity: Focus on specific entities
  • contextual: Group by themes
  • summary: CAG-powered summaries
  • hyde: Hypothetical Document Embeddings
  • reason: Chain-of-Thought retrieval
  • reflect: Self-reflection analysis

Background Indexing with LLM

Index directories with optional LLM-powered analysis:

curl -X POST http://localhost:3001/api/index/start \
  -H "Content-Type: application/json" \
  -d '{
    "directory": "/path/to/docs",
    "patterns": ["*.md", "*.rs"],
    "enable_llm": true,
    "build_graph": true
  }'

LLM analysis extracts:

  • Summaries at multiple abstraction levels
  • Entities (people, organizations, concepts)
  • Topics and key points
  • Relationships between documents
  • Auto-generated tags

Git Metadata Integration

When storing entries from files in git repositories, Memory Wiki automatically captures:

  • Branch name
  • Commit hash (short and full)
  • File path relative to repo root
  • Repository name and remote URL
  • Author and commit timestamp

Disable with MEMORY_WIKI_DISABLE_GIT_METADATA=true.

Multi-Root Storage

Memory Wiki can isolate storage per workspace root:

  • Each MCP client root gets its own data store
  • Use stores tool to list, switch, or enable global search
  • Prevents cross-project data contamination

Search Reranking

When enabled, search results are reranked using BGE cross-encoder:

  • Improves relevance for both semantic and hybrid search
  • Response includes "reranked": true indicator
  • Enable with MEMORY_WIKI_ENABLE_RERANKER=true

Documentation

Full documentation is available in the docs/ directory:

Available Embedding Models

Model Params Dimensions Best For
bge-small-en-v1.5 33M 384 Fast, good quality
bge-base-en-v1.5 109M 768 Balanced
bge-large-en-v1.5 335M 1024 Best quality
all-minilm-l6-v2 22M 384 Very fast
multilingual-e5-small 118M 384 Multi-language
multilingual-e5-base 278M 768 Multi-language, larger
nomic-embed-text-v1 137M 768 Long context
paraphrase-albert 11M 768 Smallest

Project Structure

src/
├── main.rs               # Entry point
├── config.rs             # Environment configuration
├── handler_simplified.rs # MCP request handler
├── tools/                # Tool definitions
│   ├── mod.rs            # Tool registry
│   └── simplified.rs     # Simplified tool schemas
├── handlers/             # Tool handlers
│   ├── memory.rs         # Entry management
│   ├── search.rs         # Search operations
│   ├── graph.rs          # Graph operations
│   ├── perspective.rs    # Multi-perspective exploration
│   └── ...
├── embeddings.rs         # Embedding model wrapper
├── storage_embedded.rs   # Entry storage
├── graph.rs              # Graph storage
├── multi_store.rs        # Multi-root storage manager
├── git_metadata.rs       # Git metadata extraction
├── scheduler.rs          # File scheduler
├── reranker.rs           # Cross-encoder reranking
├── ingestion.rs          # Document ingestion engine
├── consolidation.rs      # Duplicate detection
├── time_parser.rs        # Natural language time parsing
├── hybrid_search.rs      # BM25 + vector search
├── entity.rs             # Entity extraction
├── cag.rs                # Context-Augmented Generation
├── advanced_retrieval.rs # HyDE, CoT, Self-Reflection
├── background_indexer.rs # Async directory indexing
├── llm_indexer.rs        # LLM-powered analysis
├── web.rs                # Web UI server
└── models.rs             # Data structures

Data Storage

All data is stored in the data/ directory:

data/
├── entries.json         # Knowledge entries with embeddings
├── graph.json           # Relations between entries
├── scheduler.json       # File tracking state
├── collections/         # Collection metadata
└── roots/               # Per-workspace root stores (when multi-root enabled)
    └── <hash>/
        ├── entries.json
        └── graph.json

License

MIT

Commit count: 0

cargo fmt