Crates.io | metromc |
lib.rs | metromc |
version | 0.2.0 |
source | src |
created_at | 2024-01-04 05:42:13.114645 |
updated_at | 2024-01-04 06:17:34.986736 |
description | Markov chain Monte Carlo sampling using the Independence Metropolis-Hastings algorithm. |
homepage | |
repository | https://github.com/obsidiandynamics/mcmc |
max_upload_size | |
id | 1088194 |
size | 35,604 |
metromc
Markov chain Monte Carlo (MCMC) sampling using the Independence Metropolis-Hastings algorithm with uniform transition kernel.
Uses the tinyrand RNG to sample at a rate of ~50M samples/sec.
Supports the following distributions:
It is easy to add more univariate distributions by supplying an implementation of a PDF or wrapping one from the excellent statrs crate.
Draw samples from the Gaussian distribution using MCMC.
use std::ops::RangeInclusive;
use tinyrand::Wyrand;
use metromc::gaussian::Gaussian;
use metromc::sampler::{Config, Sampler};
// sample from Gaussian with µ=0.0 and σ=1.0, in the interval [-5.0, 5.0]
let sampler = Sampler::new(Config {
rand: Wyrand::default(),
dist: Gaussian::new(0.0, 1.0),
range: -5.0..=5.0,
});
// take 1,000 samples after dropping the first 10
for sample in sampler.skip(10).take(1_000) {
println!("{sample:.6}");
}