| Crates.io | nanofts |
| lib.rs | nanofts |
| version | 0.3.3 |
| created_at | 2026-01-01 11:14:59.557901+00 |
| updated_at | 2026-01-02 00:09:21.753539+00 |
| description | High-performance full-text search engine in Rust |
| homepage | https://github.com/BirchKwok/NanoFTS |
| repository | https://github.com/BirchKwok/NanoFTS |
| max_upload_size | |
| id | 2016061 |
| size | 273,691 |
A high-performance full-text search engine with Rust core, featuring efficient indexing and searching capabilities for both English and Chinese text.
pip install nanofts
from nanofts import create_engine
# Create a search engine
engine = create_engine(
index_file="./index.nfts",
track_doc_terms=True, # Enable update/delete operations
)
# Add documents (field values must be strings)
engine.add_document(1, {"title": "Python教程", "content": "学习Python编程"})
engine.add_document(2, {"title": "数据分析", "content": "使用pandas进行数据处理"})
engine.flush()
# Search - returns ResultHandle object
result = engine.search("Python")
print(f"Found {result.total_hits} documents")
print(f"Document IDs: {result.to_list()}")
# Update document
engine.update_document(1, {"title": "高级Python教程", "content": "深入学习Python"})
# Delete document
engine.remove_document(2)
# Compact to persist deletions
engine.compact()
from nanofts import create_engine
engine = create_engine(
index_file="./index.nfts", # Index file path (empty string for memory-only)
max_chinese_length=4, # Max Chinese n-gram length
min_term_length=2, # Minimum term length to index
fuzzy_threshold=0.7, # Fuzzy search similarity threshold (0.0-1.0)
fuzzy_max_distance=2, # Maximum edit distance for fuzzy search
track_doc_terms=False, # Enable for update/delete support
drop_if_exists=False, # Drop existing index on creation
lazy_load=False, # Lazy load mode (memory efficient)
cache_size=10000, # LRU cache size for lazy load mode
)
# Add single document
engine.add_document(doc_id=1, fields={"title": "Hello", "content": "World"})
# Add multiple documents
docs = [
(1, {"title": "Doc 1", "content": "Content 1"}),
(2, {"title": "Doc 2", "content": "Content 2"}),
]
engine.add_documents(docs)
# Update document (requires track_doc_terms=True)
engine.update_document(1, {"title": "Updated", "content": "New content"})
# Delete single document
engine.remove_document(1)
# Delete multiple documents
engine.remove_documents([1, 2, 3])
# Flush buffer to disk
engine.flush()
# Compact index (applies deletions permanently)
engine.compact()
# Basic search - returns ResultHandle
result = engine.search("python programming")
# Get results
doc_ids = result.to_list() # List[int]
doc_ids = result.to_numpy() # numpy array
top_10 = result.top(10) # Top N results
page_2 = result.page(page=2, size=10) # Pagination
# Result properties
print(result.total_hits) # Total match count
print(result.is_empty) # Check if empty
print(1 in result) # Check if doc_id in results
# Fuzzy search (for typo tolerance)
result = engine.fuzzy_search("pythn", min_results=5)
print(result.fuzzy_used) # True if fuzzy matching was applied
# Batch search
results = engine.search_batch(["python", "rust", "java"])
# AND search (intersection)
result = engine.search_and(["python", "tutorial"])
# OR search (union)
result = engine.search_or(["python", "rust"])
# Filter by document IDs
result = engine.filter_by_ids([1, 2, 3, 4, 5])
# Exclude specific IDs
result = engine.exclude_ids([1, 2])
# Search for different terms
python_docs = engine.search("python")
rust_docs = engine.search("rust")
# Intersection (AND)
both = python_docs.intersect(rust_docs)
# Union (OR)
either = python_docs.union(rust_docs)
# Difference (NOT)
python_only = python_docs.difference(rust_docs)
# Chained operations
result = engine.search("python").intersect(
engine.search("tutorial")
).difference(
engine.search("beginner")
)
stats = engine.stats()
print(stats)
# {
# 'term_count': 1234,
# 'search_count': 100,
# 'fuzzy_search_count': 10,
# 'total_search_ns': 1234567,
# ...
# }
NanoFTS supports importing data from various sources:
from nanofts import create_engine
engine = create_engine("./index.nfts")
# Import from pandas DataFrame
import pandas as pd
df = pd.DataFrame({
'id': [1, 2, 3],
'title': ['Hello World', '全文搜索', 'Test Document'],
'content': ['This is a test', '支持多语言', 'Another test']
})
engine.from_pandas(df, id_column='id')
# Import from Polars DataFrame
import polars as pl
df = pl.DataFrame({
'id': [1, 2, 3],
'title': ['Doc 1', 'Doc 2', 'Doc 3']
})
engine.from_polars(df, id_column='id')
# Import from PyArrow Table
import pyarrow as pa
table = pa.Table.from_pydict({
'id': [1, 2, 3],
'title': ['Arrow 1', 'Arrow 2', 'Arrow 3']
})
engine.from_arrow(table, id_column='id')
# Import from Parquet file
engine.from_parquet("documents.parquet", id_column='id')
# Import from CSV file
engine.from_csv("documents.csv", id_column='id')
# Import from JSON file
engine.from_json("documents.json", id_column='id')
# Import from JSON Lines file
engine.from_json("documents.jsonl", id_column='id', lines=True)
# Import from Python dict list
data = [
{'id': 1, 'title': 'Hello', 'content': 'World'},
{'id': 2, 'title': 'Test', 'content': 'Document'}
]
engine.from_dict(data, id_column='id')
By default, all columns except the ID column are indexed. You can specify which columns to index:
# Only index 'title' and 'content' columns, ignore 'metadata'
engine.from_pandas(df, id_column='id', text_columns=['title', 'content'])
# Same for other import methods
engine.from_csv("data.csv", id_column='id', text_columns=['title', 'content'])
You can pass additional options to the underlying pandas readers:
# CSV with custom delimiter
engine.from_csv("data.csv", id_column='id', sep=';', encoding='utf-8')
# JSON Lines format
engine.from_json("data.jsonl", id_column='id', lines=True)
NanoFTS handles Chinese text using n-gram tokenization:
engine = create_engine(
index_file="./chinese_index.nfts",
max_chinese_length=4, # Generate 2,3,4-gram for Chinese
)
engine.add_document(1, {"content": "全文搜索引擎"})
engine.flush()
# Search Chinese text
result = engine.search("搜索")
print(result.to_list()) # [1]
# Create persistent index
engine = create_engine(index_file="./data.nfts")
engine.add_document(1, {"title": "Test"})
engine.flush()
# Close and reopen
del engine
engine = create_engine(index_file="./data.nfts")
# Data is automatically recovered
result = engine.search("Test")
print(result.to_list()) # [1]
# Important: Use compact() to persist deletions
engine.remove_document(1)
engine.compact() # Deletions are now permanent
# Create in-memory engine (no persistence)
engine = create_engine(index_file="")
engine.add_document(1, {"content": "temporary data"})
# No flush needed for in-memory mode
result = engine.search("temporary")
compact() after bulk deletions - Deletions are only persisted after compactiontrack_doc_terms=True if you need update/delete operationsflush() periodically to persist new documentslazy_load=True for large indexes that don't fit in memory# Batch operations are faster
docs = [(i, {"content": f"doc {i}"}) for i in range(10000)]
engine.add_documents(docs) # Much faster than individual add_document calls
engine.flush()
# Use batch search for multiple queries
results = engine.search_batch(["query1", "query2", "query3"])
# Use result set operations instead of multiple searches
# Good:
result = engine.search_and(["python", "tutorial"])
# Instead of:
# result = engine.search("python").intersect(engine.search("tutorial"))
If you're upgrading from the old FullTextSearch API:
# Old API (deprecated)
# from nanofts import FullTextSearch
# fts = FullTextSearch(index_dir="./index")
# fts.add_document(1, {"title": "Test"})
# results = fts.search("Test") # Returns List[int]
# New API
from nanofts import create_engine
engine = create_engine(index_file="./index.nfts")
engine.add_document(1, {"title": "Test"})
result = engine.search("Test")
results = result.to_list() # Returns List[int]
Key differences:
FullTextSearch → create_engine() functionindex_dir → index_file (file path, not directory)ResultHandle instead of List[int].to_list() to get document IDscompact() to persist deletionsThis project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.