neuros

Crates.ioneuros
lib.rsneuros
version0.1.3
sourcesrc
created_at2024-04-12 20:32:54.842031
updated_at2024-04-16 10:24:01.032701
descriptionNeuros is a Rust package for Artificial (Feedforward) Neural Networks (ANNs) processing.
homepage
repository
max_upload_size
id1206939
size42,500
SaadD (SaadDAHMANI)

documentation

README

Neuros

Neuros is a Rust package for Artificial (Feedforward) Neural Networks (ANNs) processing. Neuros uses Sefar crate to perform ANNs training.

In the learning (training) stage, Neuros minimizes the Root Mean Square Error (RMSE) between computed and given model outputs.

$Error_{Learning} = RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$

Where $y_i$ and $\hat{y}_i$ represent the computed and given model outputs, respectively.

In the case of multiple ANN outputs, Neuros minimizes the sum of RMSE.

$Error_{Learning} = \sum RMSE$

Training algorithms

The current version supports the following training algorithms:

[x] Equilibrium Optimizer (EO),

[x] Particle Swarm Optimizer (PSO),

[x] Growth optimizer (GO).

How to use Neuros

Please, check the folder src/bin/src for the examples.

Example (ANN with single output)

  1. Import dependencies:
[dependencies]
neuros = "0.1.1"
ndarray ="0.15.6"
linfa ="0.7.0"
sefar ="0.1.3"
  1. In the main.rs file:
extern crate neuros;
extern crate linfa;
extern crate ndarray;
extern crate sefar;

use ndarray::{array, Ix2};
use linfa::dataset::Dataset;

//--------------------------------------------------------------------------
use neuros::{trainer::{Evonet, TrainerParams}, activations::Activations};
use sefar::algos::eo::EOparams;
use sefar::algos::pso::PSOparams;
use sefar::algos::go::GOparams;
//--------------------------------------------------------------------------
fn main() {
    println!("Hello, NEUROS!");
    
    ann_test_xor();
}

#[allow(dead_code)]
fn ann_test_xor(){

     // Give the ANN structure. 
     let layers = [2, 3, 1].to_vec();

     //Give activation function for each layer.
     let activations = [Activations::Sigmoid, Activations::Sigmoid, Activations::Sigmoid].to_vec();
 
     //Give input data samples
     let records = array![[0.,0.], [1.,0.], [0.,1.], [1.,1.]];
    
     //Give output data samples
     let targets = array![[0.], [1.], [1.], [0.]];
     
     //Create a data set from (inputs, outputs) samples
     let dataset : Dataset<f64, f64, Ix2> = Dataset::new(records, targets);
 
     // shuffle the dataset
     let shuffle : bool = true;
 
     //split the dataset into (80% learning, 20% testing) 
     let split_ratio : f32 = 0.8;
 
     //Create an artificial neural network using the given parameters.
     let mut ann_restult = Evonet::new(&layers, &activations, &dataset, shuffle, split_ratio);
 
     match &mut ann_restult{
         Err(error) => panic!("Finish due to error : {}", error),
         Ok(ann)=>{
             
             // Train the neural network using Equilibrium Optimizer (EO):
             test_eo_trainer(ann);

            println!("______________________________________________________");
 
             // Train the neural network using Particle Swarm Optimizer (PSO):
             test_pso_trainer(ann);
             println!("______________________________________________________");

             // Train the neural network using Growth Optimizer (EO):
             test_go_trainer(ann);
             println!("______________________________________________________");
         }
     }
}

///
/// Run training using Growth Optimizer (GO).
///   
#[allow(dead_code)]
fn test_go_trainer(ann : &mut Evonet){

    println!("___________ANN trained by Growth Optimizer (GO)__________________");

    // define parameters for the training (learning algorithm) 
    let population_size : usize = 50; // set the search poplation size,
    let dimensions: usize = ann.get_weights_biases_count(); // get the search space dimension, 
    let max_iterations : usize = 500; // set the maximum number of iterations (learning step),
    let lb = vec![-5.0; dimensions]; // set the lower bound for the search space,
    let ub = vec![5.0; dimensions]; // set the upper bound for the search space,

    // create the EO parameters (learning algorithm)
    let params : GOparams = GOparams {
        population_size,
        dimensions,
        max_iterations,
        lower_bounds: &lb, 
        upper_bounds : &ub,
    };  

    let trainer_params = TrainerParams::GoParams(params); 
    
    // perform the learning step. 
   let learning_results = ann.do_learning(&trainer_params);
   
   println!("Learning results : RMSE_Learning = {:?}", learning_results.best_fitness);

   let x = ann.do_testing();
   println!("Testing results = {:?}", x);

   // Compute the output for a given input:
   let sample = &[0.0, 0.0]; 

   match ann.compute(sample){
           Err(eror) => println!("There is an error due to : {}", eror),
           Ok(ann_out) =>{
               println!("The ANN output for {:?} is : {:?}", sample, ann_out);
           },
   };
}

///
/// Run training using Equilibrium Optimizer (EO).
///   
#[allow(dead_code)]
fn test_eo_trainer(ann : &mut Evonet){

    println!("___________ANN trained by Equilibrium Optimizer (EO)__________________");

    // define arameters for the training (learning algorithm) 
    let population_size : usize = 50; // set the search poplation size,
    let dimensions: usize = ann.get_weights_biases_count(); // get the search space dimension, 
    let max_iterations : usize = 500; // set the maximum number of iterations (learning step),
    let lb = vec![-5.0; dimensions]; // set the lower bound for the search space,
    let ub = vec![5.0; dimensions]; // set the upper bound for the search space,
    let a1 : f64 = 2.0; // give the value of a1 parameter (Equilibrium Optimizer),
    let a2 : f64 = 1.0; // give the value of a2 parameter (Equilibrium Optimizer),
    let gp :f64 = 0.5; // give the value of GP parameter (Equilibrium Optimizer),

    // create the EO parameters (learning algorithm)
    let params = EOparams::new(population_size, dimensions, max_iterations, &lb, &ub, a1, a2, gp);  
    
    match params {
        Err(eror) => println!("I can not run because this error : {:?}", eror),
        Ok(settings)=> {
            let trainer_params = TrainerParams::EoParams(settings); 
             // perform the learning step. 
            let learning_results = ann.do_learning(&trainer_params);
            println!("EO trainer : RMSE_Learning = {:?}", learning_results.best_fitness);

             // Compute the output for a given input:
            let sample = &[0.0, 0.0]; 

            match ann.compute(sample){
                    Err(eror) => println!("There is an error due to : {}", eror),
                    Ok(ann_out) =>{
                        println!("The ANN output for {:?} is : {:?}", sample, ann_out);
                    },
            };                     
        }
    }  
}

///
/// Run training using Particle Swarm Optimizer (PSO).
///   
#[allow(dead_code)] 
fn test_pso_trainer(ann : &mut Evonet){
    println!("___________ANN trained by Particle Swarm Optimizer (PSO)__________________");

    // define arameters for the training (learning algorithm) 
    let population_size : usize = 50; // set the search poplation size,
    let dimensions: usize = ann.get_weights_biases_count(); // get the search space dimension, 
    let max_iterations : usize = 500; // set the maximum number of iterations (learning step),
    let lb = vec![-5.0; dimensions]; // set the lower bound for the search space,
    let ub = vec![5.0; dimensions]; // set the upper bound for the search space,
    let c1 : f64 = 2.0; // give the value of a1 parameter (PSO),
    let c2 : f64 = 2.0; // give the value of a2 parameter (PSO),
    
    // create the PSO parameters (learning algorithm)
    let params  = PSOparams::new(population_size, dimensions, max_iterations, &lb, &ub, c1, c2);  
    
    match params {
        Err(eror) => println!("I can not run because this error : {:?}", eror),
        Ok(settings)=> {
            let trainer_params = TrainerParams::PsoParams(settings); 
             // perform the learning step. 
            let learning_results = ann.do_learning(&trainer_params);
            println!("PSO trainer : RMSE_Learning = {:?}", learning_results.best_fitness);
             // Compute the output for a given input:
            let sample = &[0.0, 0.0]; 

            match ann.compute(sample){
                    Err(eror) => println!("There is an error due to : {}", eror),
                    Ok(ann_out) =>{
                        println!("The ANN output for {:?} is : {:?}", sample, ann_out);
                    },
            }; 
        }
    }  
}
Commit count: 0

cargo fmt