Crates.io | npsd |
lib.rs | npsd |
version | 0.2.0 |
source | src |
created_at | 2024-06-29 15:33:46.436239 |
updated_at | 2024-07-19 05:56:46.430465 |
description | Network payload serializer / deserializer framework |
homepage | |
repository | https://github.com/vmolsa/npsd |
max_upload_size | |
id | 1287435 |
size | 232,308 |
The npsd
crate provides a flexible and efficient way to serialize and deserialize network payloads. It supports converting Rust types into byte streams suitable for network transmission and reconstructing those types from byte streams received over the network. This is particularly useful for networked applications that require efficient and reliable data exchange.
npsd
and serde
Purpose: npsd
is designed specifically for network payload serialization and deserialization, offering efficient handling of byte streams for network transmission. serde
, on the other hand, is a general-purpose serialization framework supporting multiple formats (JSON, XML, etc.).
Custom Contexts: npsd
supports custom serialization contexts and middleware for extensible processing during serialization/deserialization, which is tailored for networked applications. serde
focuses on format-agnostic serialization.
Procedural Macros: Both libraries provide procedural macros, but npsd
includes specific macros (Schema
, Bitmap
, AsyncSchema
, AsyncBitmap
, Info
) for network-related serialization scenarios.
The npsd
crate also provides procedural macros for deriving serialization and deserialization implementations.
Schema
The Schema
macro derives implementations for serializing and deserializing complex Rust types.
use npsd::{Payload, Schema, Next, Middleware};
#[derive(Schema, PartialEq, Debug)]
enum Animal {
Dog,
Frog(String, Vec<isize>),
Cat { age: usize, name: String },
AntHive(Vec<String>),
}
#[test]
fn test_schema() {
// Create Middleware
let mut next = Next::default();
// Create an instance of `Animal`.
let animal = Animal::Frog("Frog".to_string(), vec![12393818, -19383812, 11111, -1093838482]);
// Serialize the `animal` instance into a packet.
animal.into_packet(&mut (), &mut next).unwrap();
// Create copy of serialized data if needed
let _serialized = next.serialized();
// Deserialize the packet back into an `Animal` instance.
let deserialized = Animal::from_packet(&mut (), &mut next).unwrap();
// Ensure the deserialized instance matches the original.
assert_eq!(deserialized, animal);
}
Bitmap
The Bitmap
macro derives implementations for serializing and deserializing bitmaps.
use npsd::{Payload, Bitmap, Next, Middleware};
#[derive(Bitmap, PartialEq, Debug)]
struct Flags {
a: bool,
b: bool,
c: bool,
}
#[test]
fn test_bitmap() {
// Create Middleware
let mut next = Next::default();
// Create an u8 bitmap of `Flags`.
let flags = Flags { a: true, b: false, c: true };
// Serialize the `Flags` into a packet.
flags.into_packet(&mut (), &mut next).unwrap();
// Create copy of serialized data if needed
let _serialized = next.serialized();
// Deserialize the packet back into an `Flags`.
let deserialized = Flags::from_packet(&mut (), &mut next).unwrap();
// Ensure the deserialized matches the original.
assert_eq!(deserialized, flags);
}
AsyncSchema
The AsyncSchema
macro derives implementations for asynchronous serializing and deserializing complex Rust types.
use npsd::{AsyncPayload, AsyncSchema, Next, Info};
#[derive(AsyncSchema, Info, PartialEq, Debug)]
enum Animal {
Dog,
Frog(String, Vec<isize>),
Cat { age: usize, name: String },
AntHive(Vec<String>),
}
#[tokio::test]
async fn test_schema() {
// Create Middleware
let mut next = Next::default();
// Create an instance of `Animal`.
let animal = Animal::Frog("Frog".to_string(), vec![12393818, -19383812, 11111, -1093838482]);
// Serialize the `animal` instance into a packet.
animal.poll_into_packet(&mut (), &mut next).await.unwrap();
// Create copy of serialized data if needed
let _serialized = next.serialized();
// Deserialize the packet back into an `Animal` instance.
let deserialized = Animal::poll_from_packet(&mut (), &mut next).await.unwrap();
// Ensure the deserialized instance matches the original.
assert_eq!(deserialized, animal);
}
AsyncBitmap
The AsyncBitmap
macro derives implementations for asynchronous serializing and deserializing bitmaps.
use npsd::{AsyncPayload, AsyncBitmap, Next, Info};
#[derive(AsyncBitmap, PartialEq, Debug)]
struct Flags {
a: bool,
b: bool,
c: bool,
}
#[test]
fn test_bitmap() {
// Create Middleware
let mut next = Next::default();
// Create an u8 bitmap of `Flags`.
let flags = Flags { a: true, b: false, c: true };
// Serialize the `Flags` into a packet.
flags.poll_into_packet(&mut (), &mut next).await.unwrap();
// Create copy of serialized data if needed
let _serialized = next.serialized();
// Deserialize the packet back into an `Flags`.
let deserialized = Flags::poll_from_packet(&mut (), &mut next).await.unwrap();
// Ensure the deserialized matches the original.
assert_eq!(deserialized, flags);
}
PayloadContext
The PayloadContext
trait provides a way to unwrap the context used in the payload processing.
Middleware
The Middleware
trait defines methods for converting types to and from payloads of bytes.
AsyncMiddleware
The AsyncMiddleware
trait defines asynchronous methods for converting types to and from payloads of bytes.
IntoPayload
The IntoPayload
trait is used to convert a type into a payload of bytes.
AsyncIntoPayload
The AsyncIntoPayload
trait is used for asynchronous methods for converting types into payloads of bytes.
FromPayload
The FromPayload
trait is used to convert a payload of bytes back into a type.
AsyncFromPayload
The AsyncFromPayload
trait is used for asynchronous methods for converting payloads of bytes back into types.
PayloadInfo
The PayloadInfo
trait provides metadata about the payload. Here are the associated constants and their descriptions:
const HASH: u64
: A constant hash value associated with the type. This hash is calculated using the type's string representation and provides a unique identifier for the payload type.const TYPE: &'static str
: A string representing the type of the payload. This is used to identify the payload type in a human-readable format.const SIZE: Option<usize>
: An optional constant representing the size of the payload. This can be used to specify a fixed size for the payload, if applicable.Payload
The Payload
trait combines IntoPayload
and FromPayload
to facilitate complete serialization and deserialization of types.
AsyncPayload
The AsyncPayload
trait combines AsyncIntoPayload
and AsyncFromPayload
to asynchronous methods for complete serialization and deserialization of types.
Contributions are welcome! Please feel free to submit a pull request or open an issue if you encounter any problems or have suggestions for improvements.
This project is licensed under the Apache 2.0 License.