Crates.io | nrf24-rs |
lib.rs | nrf24-rs |
version | 0.1.1 |
source | src |
created_at | 2021-05-14 17:04:43.400022 |
updated_at | 2021-05-14 18:18:23.62004 |
description | Platform agnostic Rust driver for the nRF24L01 2.4 GHz transciever for wireless communication between embedded devices. |
homepage | https://github.com/TomasVanRoose/RF24-rs |
repository | https://github.com/TomasVanRoose/RF24-rs |
max_upload_size | |
id | 397493 |
size | 83,636 |
This crate provides a platform agnostic Rust driver for the nRF24L01 single chip 2.4 GHz
transceiver by Nordic Semiconduct for communicating data wirelessly using the embedded-hal
traits.
The nRF24L01 transceiver module, manufactured by Nordic Semiconductor, is designed to operate in 2.4 GHz worldwide ISM frequency band and uses GFSK modulation for data transmission. The data transfer rate can be one of 250kbps, 1Mbps and 2Mbps.
This crate can be used by adding nrf24-rs
to your dependencies in your project's Cargo.toml
.
[dependencies]
nrf24-rs = "0.1"
This simple example will send a simple "Hello world" message.
use panic_halt as _;
use atmega168_hal as hal;
use hal::prelude::*;
use hal::spi;
use nrf24_rs::config::{NrfConfig, PALevel};
use nrf24_rs::{Nrf24l01, SPI_MODE};
#[atmega168_hal::entry]
fn main() -> ! {
// Take peripherals
let dp = hal::pac::Peripherals::take().unwrap();
// Initialize the different pins
let mut portb = dp.PORTB.split();
let ncs = portb.pb2.into_output(&mut portb.ddr);
let mosi = portb.pb3.into_output(&mut portb.ddr);
let miso = portb.pb4.into_pull_up_input(&mut portb.ddr);
let sclk = portb.pb5.into_output(&mut portb.ddr);
// Initialize SPI
let settings = spi::Settings {
data_order: spi::DataOrder::MostSignificantFirst,
clock: spi::SerialClockRate::OscfOver4,
mode: SPI_MODE, // SPI Mode defined in this crate
};
let (spi, ncs) = spi::Spi::new(dp.SPI, sclk, mosi, miso, ncs, settings);
let mut delay = hal::delay::Delay::<hal::clock::MHz16>::new();
let message = b"Hello world!"; // The message we will be sending
// Setup some configuration values
let config = NrfConfig::default()
.channel(8)
.pa_level(PALevel::Min)
// We will use a payload size the size of our message
.payload_size(message.len());
// Initialize the chip
let mut nrf_chip = Nrf24l01::New(spi, ce, ncs, &mut delay, config).unwrap();
if !nrf_chip.is_connected().unwrap() {
panic!("Chip is not connected.");
}
// Open a writing pipe on address "Node1".
// The listener will have to open a reading pipe with the same address
// in order to recieve this message.
nrf.open_writing_pipe(b"Node1").unwrap();
// Keep trying to send the message
while let Err(e) = nrf.write(&mut delay, &message) {
// Something went wrong while writing, try again in 50ms
delay.delay_ms(50u16);
}
// Message should now successfully have been sent!
loop {}
}
This simple example will read a "Hello world" message.
use panic_halt as _;
use atmega168_hal as hal;
use hal::prelude::*;
use hal::spi;
use nrf24_rs::config::{NrfConfig, PALevel, DataPipe};
use nrf24_rs::{Nrf24l01, SPI_MODE};
#[atmega168_hal::entry]
fn main() -> ! {
// Take peripherals
let dp = hal::pac::Peripherals::take().unwrap();
// Initialize the different pins
let mut portb = dp.PORTB.split();
let ncs = portb.pb2.into_output(&mut portb.ddr);
let mosi = portb.pb3.into_output(&mut portb.ddr);
let miso = portb.pb4.into_pull_up_input(&mut portb.ddr);
let sclk = portb.pb5.into_output(&mut portb.ddr);
// Initialize SPI
let settings = spi::Settings {
data_order: spi::DataOrder::MostSignificantFirst,
clock: spi::SerialClockRate::OscfOver4,
mode: SPI_MODE, // SPI Mode defined in this crate
};
let (spi, ncs) = spi::Spi::new(dp.SPI, sclk, mosi, miso, ncs, settings);
let mut delay = hal::delay::Delay::<hal::clock::MHz16>::new();
// Setup some configuration values
let config = NrfConfig::default()
.channel(8)
.pa_level(PALevel::Min)
// We will use a payload size the size of our message
.payload_size(b"Hello world!".len());
// Initialize the chip
let mut nrf_chip = Nrf24l01::New(spi, ce, ncs, &mut delay, config).unwrap();
if !nrf_chip.is_connected().unwrap() {
panic!("Chip is not connected.");
}
// Open reading pipe 0 with address "Node1".
// The sender will have to open its writing pipe with the same address
// in order to transmit this message successfully.
nrf_chip.open_reading_pipe(DataPipe::DP0, b"Node1").unwrap();
// Set the chip in RX mode
nrf_chip.start_listening().unwrap();
// Keep checking if there is any data available to read
while !nrf_chip.data_available().unwrap() {
// No data availble, wait 50ms, then check again
delay.delay_ms(50u16);
}
// Now there is some data availble to read
// Initialize empty buffer
let mut buffer = [0; b"Hello world!".len()];
nrf_chip.read(&mut buffer).unwrap();
assert_eq!(buffer, b"Hello world!");
loop {}
}
uDebug
implementation from the ufmt crate for all public structs and enums.This project is licensed under either of
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.