number-theory

Crates.ionumber-theory
lib.rsnumber-theory
version0.0.24
sourcesrc
created_at2021-12-26 02:46:08.027051
updated_at2023-11-09 19:38:57.493229
descriptionFast primality, factorization and elementary number theory for integer types
homepagehttps://rust-cas.org
repositoryhttps://github.com/JASory/ENT
max_upload_size
id503168
size318,780
(JASory)

documentation

README

ENT

Elementary Number Theory for Integers in Rust

The fastest provably correct library for primality checking in the interval 0;2^64 + 2^49 that is publicly available. Algebraic definitions of primality and factorization are used, permitting checks like -127.is_prime() to return true and unique factorizations to be considered unsigned.Published as number-theory on crates.io

Currently implements these functions

  • Primality
  • Factorization
  • GCD, Extended GCD
  • Carmichael,Euler & Jordan totients
  • Dedekind psi
  • Liouville, and Mobius function
  • Prime-counting function/nth-prime, and prime lists
  • Integer sqrt/nth root
  • Integer radical
  • K-free
  • Quadratic and Exponential residues
  • Legendre symbol
  • Jacobi symbol
  • Smoothness checks

Additionally this library has an implementation of the previous NT functions for arbitrary-precision integers, plus some elementary arithmetic. Multiplication utilizes Karatsuba algorithm, otherwise all other arithmetic can be assumed to be naive.

  • Addition/subtraction
  • Multiplication
  • Euclidean Division
  • Conversion to and from radix-10 string
  • Successor function (+1)
  • SIRP-factorials {generalization of factorials}
  • Conditional Interval Product (CIP factorial)
  • Sqrt/nth root
  • Exponentiation
  • Logarithms
  • Probable pseudoprime construction

Usage is fairly simple

// include NT functions
use number_theory::NumberTheory;
// include arbitrary-precision arithmetic
use number_theory::Mpz;
  // Sign, generally unnecessary for ENT
//use number_theory:Sign; 
let mersenne = Mpz::from_string("-127").unwrap(); 
assert_eq!(mersenne.is_prime(), true);
 // Or for a more complex example
 
 // check if x mod 1 === 0, trivial closure
 let modulo = |x: &u64| {if x%1==0{return true} return false};
 
  //Generate  872 factorial, using the above trivial function
  // this can be just as easily reproduced as Mpz::sirp(1,872,1,0);
 let mut factorial = Mpz::cip(1, 872,modulo);
 
 // Successor function, increment by one
 factorial.successor();
 
 // 872! + 1 is in-fact a factorial prime
 assert_eq!(factorial.is_prime(),true)
Commit count: 92

cargo fmt