ollama-rs-mangle-fork

Crates.ioollama-rs-mangle-fork
lib.rsollama-rs-mangle-fork
version0.1.1
sourcesrc
created_at2023-11-21 19:14:07.436781
updated_at2023-11-21 19:14:07.436781
descriptionA Rust library for interacting with the Ollama API
homepage
repositoryhttps://github.com/manglemix/ollama-rs
max_upload_size
id1044514
size74,726
Najman Husaini (manglemix)

documentation

README

Ollama-rs

A simple and easy to use library for interacting with Ollama servers.

It was made following the Ollama API documentation.

Installation

Add ollama-rs to your Cargo.toml

[dependencies]
ollama-rs = "0.1.1"

Initialize Ollama

// By default it will connect to localhost:11434
let ollama = Ollama::default();

// For custom values:
let ollama = Ollama::new("http://localhost".to_string(), 11434);

Usage

Feel free to check the Chatbot example that shows how to use the library to create a simple chatbot in less than 50 lines of code.

These examples use poor error handling for simplicity, but you should handle errors properly in your code.

Completion generation

let model = "llama2:latest".to_string();
let prompt = "Why is the sky blue?".to_string();

let res = ollama.generate(GenerationRequest::new(model, prompt)).await;

if let Ok(res) = res {
    println!("{}", res.response);
}

OUTPUTS: The sky appears blue because of a phenomenon called Rayleigh scattering...

Completion generation (streaming)

Requires the stream feature.

let model = "llama2:latest".to_string();
let prompt = "Why is the sky blue?".to_string();

let mut stream = ollama.generate_stream(GenerationRequest::new(model, prompt)).await.unwrap();

let mut stdout = tokio::io::stdout();
while let Some(res) = stream.next().await {
    let res = res.unwrap();
    stdout.write(res.response.as_bytes()).await.unwrap();
    stdout.flush().await.unwrap();
}

Same output as above but streamed.

List local models

let res = ollama.list_local_models().await.unwrap();

Returns a vector of Model structs.

Show model information

let res = ollama.show_model_info("llama2:latest".to_string()).await.unwrap();

Returns a ModelInfo struct.

Create a model

let res = ollama.create_model("model".into(), "/tmp/Modelfile.example".into()).await.unwrap();

Returns a CreateModelStatus struct representing the final status of the model creation.

Create a model (streaming)

Requires the stream feature.

let mut res = ollama.create_model_stream("model".into(), "/tmp/Modelfile.example".into()).await.unwrap();

while let Some(res) = res.next().await {
    let res = res.unwrap();
    // Handle the status
}

Returns a CreateModelStatusStream that will stream every status update of the model creation.

Copy a model

let _ = ollama.copy_model("mario".into(), "mario_copy".into()).await.unwrap();

Delete a model

ollama.delete_model("mario_copy".into()).await.unwrap();

Generate embeddings

let prompt = "Why is the sky blue?".to_string();
let res = ollama.generate_embeddings("llama2:latest".to_string(), prompt, None).await.unwrap();

Returns a GenerateEmbeddingsResponse struct containing the embeddings (a vector of floats).

Commit count: 51

cargo fmt