| Crates.io | openai-tools |
| lib.rs | openai-tools |
| version | 1.0.4 |
| created_at | 2024-12-16 13:49:46.662083+00 |
| updated_at | 2026-01-18 07:58:47.126327+00 |
| description | Tools for OpenAI API |
| homepage | |
| repository | https://github.com/akitenkrad/rs-openai-tools |
| max_upload_size | |
| id | 1485017 |
| size | 1,155,852 |
API Wrapper for OpenAI API.
To start using the openai-tools, add it to your projects's dependencies in the `Cargo.toml' file:
cargo add openai-tools
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::{message::Message, role::Role, models::ChatModel};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let response = ChatCompletion::new()
.model(ChatModel::Gpt4oMini)
.messages(vec![Message::from_string(Role::User, "Hello!")])
.chat()
.await?;
println!("{:?}", response.choices[0].message.content);
Ok(())
}
Set the API key in the .env file:
OPENAI_API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxx"
Set Azure-specific environment variables:
AZURE_OPENAI_API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxx"
AZURE_OPENAI_BASE_URL = "https://my-resource.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview"
Note: Each API (Chat, Embedding, etc.) requires its own complete endpoint URL including the API path.
All API clients support multiple ways to configure authentication:
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::auth::{AuthProvider, AzureAuth};
// OpenAI (default)
let chat = ChatCompletion::new();
// Azure (from environment variables)
let chat = ChatCompletion::azure()?;
// Auto-detect provider from environment variables
let chat = ChatCompletion::detect_provider()?;
// URL-based detection (auto-detects provider from URL pattern)
// *.openai.azure.com → Azure, all other URLs → OpenAI-compatible
let chat = ChatCompletion::with_url(
"https://my-resource.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview",
"azure-key",
);
// OpenAI-compatible APIs (Ollama, vLLM, LocalAI, etc.)
let chat = ChatCompletion::with_url(
"http://localhost:11434/v1",
"ollama",
);
// Explicit Azure auth configuration
let auth = AuthProvider::Azure(
AzureAuth::new(
"api-key",
"https://my-resource.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview"
)
);
let chat = ChatCompletion::with_auth(auth);
Import the necessary modules in your code:
use openai_tools::chat::ChatCompletion;
use openai_tools::responses::Responses;
use openai_tools::embedding::Embedding;
use openai_tools::realtime::RealtimeClient;
use openai_tools::conversations::Conversations;
use openai_tools::models::Models;
use openai_tools::files::Files;
use openai_tools::moderations::Moderations;
use openai_tools::images::Images;
use openai_tools::audio::Audio;
use openai_tools::batch::Batches;
use openai_tools::fine_tuning::FineTuning;
| API | Endpoint | Features |
|---|---|---|
| Chat | /v1/chat/completions |
Structured Output, Function Calling, Image Input |
| Responses | /v1/responses |
CRUD, Structured Output, Function Calling, Image Input, Reasoning, Tool Choice, Prompt Templates |
| Conversations | /v1/conversations |
CRUD |
| Embedding | /v1/embeddings |
Basic |
| Realtime | wss://api.openai.com/v1/realtime |
Function Calling, Audio I/O, VAD, WebSocket |
| Models | /v1/models |
CRUD |
| Files | /v1/files |
CRUD, Multipart Upload |
| Moderations | /v1/moderations |
Basic |
| Images | /v1/images |
Multipart Upload |
| Audio | /v1/audio |
Audio I/O, Multipart Upload |
| Batch | /v1/batches |
CRUD |
| Fine-tuning | /v1/fine_tuning/jobs |
CRUD |
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::message::Message;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let messages = vec![Message::from_string("user", "Hello!")];
let mut chat = ChatCompletion::new();
let response = chat
.model_id("gpt-4o-mini")
.messages(messages)
.temperature(0.7)
.chat()
.await?;
println!("{}", response.choices[0].message.content);
Ok(())
}
use openai_tools::responses::request::Responses;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = Responses::new();
let response = client
.model_id("gpt-4o")
.str_message("What is the capital of France?")
.complete()
.await?;
println!("{}", response.output_text());
Ok(())
}
use openai_tools::responses::request::{Responses, ToolChoice, ToolChoiceMode};
use openai_tools::common::models::ChatModel;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = Responses::new();
// Create a response with tool_choice and prompt caching
client.model(ChatModel::Gpt4oMini)
.str_message("Hello!")
.tool_choice(ToolChoice::Simple(ToolChoiceMode::Auto))
.prompt_cache_key("my-cache-key")
.store(true);
let response = client.complete().await?;
let response_id = response.id.as_ref().unwrap();
// Retrieve a stored response
let retrieved = client.retrieve(response_id).await?;
// List input items with pagination
let items = client.list_input_items(response_id, Some(10), None, None).await?;
// Count input tokens before sending a request
let tokens = client.get_input_tokens("gpt-4o-mini", serde_json::json!("Hello!")).await?;
println!("Input tokens: {}", tokens.input_tokens);
// Delete a response when done
client.delete(response_id).await?;
Ok(())
}
Manage long-running conversations with the Responses API:
use openai_tools::conversations::request::Conversations;
use openai_tools::conversations::response::InputItem;
use std::collections::HashMap;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let conversations = Conversations::new()?;
// Create a conversation with metadata
let mut metadata = HashMap::new();
metadata.insert("user_id".to_string(), "user123".to_string());
let conv = conversations.create(Some(metadata), None).await?;
println!("Created conversation: {}", conv.id);
// Add items to the conversation
let items = vec![InputItem::user_message("Hello!")];
conversations.create_items(&conv.id, items).await?;
// List conversation items
let items = conversations.list_items(&conv.id, Some(10), None, None, None).await?;
for item in &items.data {
println!("Item: {} ({})", item.id, item.item_type);
}
// Delete conversation when done
conversations.delete(&conv.id).await?;
Ok(())
}
Real-time audio and text communication with GPT-4o models through WebSocket:
use openai_tools::realtime::{RealtimeClient, Modality, Voice};
use openai_tools::realtime::events::server::ServerEvent;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = RealtimeClient::new();
client
.model("gpt-4o-realtime-preview")
.modalities(vec![Modality::Text, Modality::Audio])
.voice(Voice::Alloy)
.instructions("You are a helpful assistant.");
let mut session = client.connect().await?;
// Send a text message
session.send_text("Hello!").await?;
session.create_response(None).await?;
// Process events
while let Some(event) = session.recv().await? {
match event {
ServerEvent::ResponseTextDelta(e) => print!("{}", e.delta),
ServerEvent::ResponseDone(_) => break,
_ => {}
}
}
session.close().await?;
Ok(())
}
List and retrieve available models:
use openai_tools::models::request::Models;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let models = Models::new()?;
// List all models
let response = models.list().await?;
for model in &response.data {
println!("{}: owned by {}", model.id, model.owned_by);
}
// Retrieve a specific model
let model = models.retrieve("gpt-4o-mini").await?;
println!("Model: {}", model.id);
Ok(())
}
Upload, manage, and retrieve files:
use openai_tools::files::request::Files;
use openai_tools::files::response::FilePurpose;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let files = Files::new()?;
// Upload a file for fine-tuning
let file = files.upload_path("training.jsonl", FilePurpose::FineTune).await?;
println!("Uploaded: {}", file.id);
// List files
let response = files.list(None).await?;
for file in &response.data {
println!("{}: {} bytes", file.filename, file.bytes);
}
// Delete file
files.delete(&file.id).await?;
Ok(())
}
Check content for policy violations:
use openai_tools::moderations::request::Moderations;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let moderations = Moderations::new()?;
// Check a single text
let response = moderations.moderate_text("Hello, world!", None).await?;
if response.results[0].flagged {
println!("Content was flagged!");
} else {
println!("Content is safe.");
}
// Check multiple texts at once
let texts = vec!["Text 1".to_string(), "Text 2".to_string()];
let response = moderations.moderate_texts(texts, None).await?;
Ok(())
}
Generate images with DALL-E:
use openai_tools::images::request::{Images, GenerateOptions, ImageModel, ImageSize, ImageQuality};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let images = Images::new()?;
// Generate an image
let options = GenerateOptions {
model: Some(ImageModel::DallE3),
size: Some(ImageSize::Size1024x1024),
quality: Some(ImageQuality::Hd),
..Default::default()
};
let response = images.generate("A sunset over mountains", options).await?;
println!("Image URL: {:?}", response.data[0].url);
Ok(())
}
Text-to-speech and transcription:
use openai_tools::audio::request::{Audio, TtsOptions, TranscribeOptions};
use openai_tools::audio::response::{TtsModel, Voice};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let audio = Audio::new()?;
// Text-to-speech
let options = TtsOptions {
model: TtsModel::Tts1Hd,
voice: Voice::Nova,
..Default::default()
};
let bytes = audio.text_to_speech("Hello!", options).await?;
std::fs::write("hello.mp3", bytes)?;
// Transcribe audio
let options = TranscribeOptions {
language: Some("en".to_string()),
..Default::default()
};
let response = audio.transcribe("audio.mp3", options).await?;
println!("Transcript: {}", response.text);
Ok(())
}
Process large volumes of requests asynchronously with 50% cost savings:
use openai_tools::batch::request::{Batches, CreateBatchRequest, BatchEndpoint};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let batches = Batches::new()?;
// List all batches
let response = batches.list(Some(20), None).await?;
for batch in &response.data {
println!("Batch: {} - {:?}", batch.id, batch.status);
}
// Create a batch job (input file must be uploaded via Files API with purpose "batch")
let request = CreateBatchRequest::new("file-abc123", BatchEndpoint::ChatCompletions);
let batch = batches.create(request).await?;
println!("Created batch: {}", batch.id);
Ok(())
}
Customize models with your training data:
use openai_tools::fine_tuning::request::{FineTuning, CreateFineTuningJobRequest};
use openai_tools::fine_tuning::response::Hyperparameters;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let fine_tuning = FineTuning::new()?;
// List fine-tuning jobs
let response = fine_tuning.list(Some(10), None).await?;
for job in &response.data {
println!("Job: {} - {:?}", job.id, job.status);
}
// Create a fine-tuning job
let hyperparams = Hyperparameters {
n_epochs: Some(3),
..Default::default()
};
let request = CreateFineTuningJobRequest::new("gpt-4o-mini-2024-07-18", "file-abc123")
.with_suffix("my-model")
.with_supervised_method(Some(hyperparams));
let job = fine_tuning.create(request).await?;
println!("Created job: {}", job.id);
Ok(())
}
use openai_tools::embedding::request::Embedding;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut embedding = Embedding::new();
let response = embedding
.model("text-embedding-3-small")
.input_text("Hello, world!")
.embed()
.await?;
println!("Embedding dimensions: {}", response.data[0].embedding.as_1d().unwrap().len());
Ok(())
}
ParameterSupport/ParameterRestriction typescargo nextest run for test executionAzureAuth to accept complete endpoint URL
AzureAuth::new(api_key, base_url) - simple 2-argument constructorbase_url must be the complete endpoint URL including API path (e.g., /chat/completions)endpoint() method now returns base_url as-is (path parameter is ignored)resource_name, deployment_name, api_version fieldsuse_entra_id, with_entra_id(), is_entra_id() (Entra ID support removed)with_url() method signature
with_url(url, api_key, deployment_name) to with_url(url, api_key)AZURE_OPENAI_BASE_URL (complete endpoint URL) instead of separate resource/deployment varsAZURE_OPENAI_TOKEN (Entra ID token support removed)with_url(url, api_key, deployment_name) - auto-detect provider from URL patternfrom_url(url) - auto-detect with env var credentials*.openai.azure.com → Azure, all other URLs → OpenAI-compatibleazure() and environment variable configurationAuthProvider abstraction for unified authentication handlingtracing::warn! warningsMIT License