| Crates.io | optirs-tpu |
| lib.rs | optirs-tpu |
| version | 0.1.0-beta.1 |
| created_at | 2025-09-18 09:38:33.026738+00 |
| updated_at | 2025-09-20 16:01:54.27459+00 |
| description | OptiRS TPU coordination and pod management |
| homepage | |
| repository | https://github.com/cool-japan/optirs |
| max_upload_size | |
| id | 1844479 |
| size | 1,323,477 |
TPU coordination and pod management for large-scale distributed optimization in the OptiRS machine learning optimization library.
OptiRS-TPU provides comprehensive support for Google Cloud TPU (Tensor Processing Unit) coordination, pod management, and distributed training optimization. This crate enables efficient scaling of machine learning optimization workloads across TPU pods, with intelligent resource allocation, fault tolerance, and performance monitoring.
Add this to your Cargo.toml:
[dependencies]
optirs-tpu = "0.1.0-beta.1"
Google Cloud Setup:
gcloud auth login
gcloud config set project YOUR_PROJECT_ID
TPU Quotas: Ensure sufficient TPU quotas in your GCP project
Network Configuration: Proper VPC and firewall settings for TPU communication
use optirs_tpu::{TpuManager, TpuOptimizer, PodConfig};
use optirs_core::optimizers::Adam;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Initialize TPU manager
let tpu_manager = TpuManager::new()
.with_project("your-gcp-project")
.with_zone("us-central1-a")
.build()
.await?;
// Request TPU resources
let pod_config = PodConfig::new()
.with_tpu_type("v3-8")
.with_cores(8)
.build();
let tpu_pod = tpu_manager.allocate_pod(&pod_config).await?;
// Create TPU-optimized optimizer
let mut optimizer = TpuOptimizer::new(tpu_pod)
.with_optimizer(Adam::new(0.001))
.with_xla_optimization(true)
.build()?;
// Distributed optimization across TPU cores
let mut params = optimizer.create_distributed_tensor(&[8192, 4096])?;
let grads = optimizer.load_gradients_from_dataset(&training_data).await?;
// Perform distributed optimization step
optimizer.step_distributed(&mut params, &grads).await?;
Ok(())
}
use optirs_tpu::{MultiPodManager, PodTopology, AllReduceStrategy};
// Setup multi-pod coordination
let multi_pod = MultiPodManager::new()
.with_topology(PodTopology::Ring)
.with_allreduce_strategy(AllReduceStrategy::HierarchicalAllReduce)
.with_pods(&[
pod_config_a.in_zone("us-central1-a"),
pod_config_b.in_zone("us-central1-b"),
pod_config_c.in_zone("europe-west4-a"),
])
.build()
.await?;
// Distribute model across pods
multi_pod.distribute_model(&model_parameters).await?;
// Synchronized optimization across all pods
let optimization_result = multi_pod
.step_synchronized(&gradients)
.with_timeout(Duration::from_secs(300))
.await?;
use optirs_tpu::{AutoScaler, ScalingPolicy, WorkloadMetrics};
// Setup automatic scaling
let autoscaler = AutoScaler::new()
.with_policy(ScalingPolicy::PerformanceBased)
.with_min_cores(8)
.with_max_cores(256)
.with_target_utilization(0.85)
.build();
// Monitor and scale based on workload
let metrics = WorkloadMetrics::from_current_training(&optimizer).await?;
let scaling_decision = autoscaler.evaluate_scaling(&metrics).await?;
if let Some(new_config) = scaling_decision {
optimizer.scale_to_config(new_config).await?;
}
use optirs_tpu::xla::{XlaCompiler, OptimizationFlags};
// Compile optimization pipeline with XLA
let xla_compiler = XlaCompiler::new()
.with_optimization_level(3)
.with_flags(OptimizationFlags {
enable_fusion: true,
enable_layout_optimization: true,
enable_memory_optimization: true,
})
.build();
let optimized_graph = xla_compiler
.compile_optimization_pipeline(&optimizer_config)
.await?;
optimizer.load_xla_graph(optimized_graph)?;
export GOOGLE_APPLICATION_CREDENTIALS="path/to/service-account.json"
export TPU_PROJECT="your-gcp-project"
export TPU_ZONE="us-central1-a"
export TPU_NETWORK="default"
# tpu_config.yaml
project: "your-gcp-project"
zone: "us-central1-a"
network: "default"
accelerator_type: "v3-8"
software_version: "2.8.0"
enable_ip_alias: true
reserved: false
Load configuration:
use optirs_tpu::config::TpuConfig;
let config = TpuConfig::from_file("tpu_config.yaml").await?;
let tpu_manager = TpuManager::from_config(config).await?;
use optirs_tpu::monitoring::{TpuMonitor, MetricsCollector};
let monitor = TpuMonitor::new()
.with_collection_interval(Duration::from_secs(30))
.with_metrics_endpoint("https://monitoring.googleapis.com")
.build();
// Collect and report TPU metrics
let metrics = monitor.collect_metrics().await?;
monitor.report_to_cloud_monitoring(&metrics).await?;
OptiRS-TPU provides comprehensive error handling for distributed TPU operations:
use optirs_tpu::error::{TpuError, TpuResult};
match optimizer.step_distributed(&mut params, &grads).await {
Ok(metrics) => {
println!("Optimization successful: {:.4} loss", metrics.loss);
}
Err(TpuError::PodUnavailable) => {
// Handle TPU pod unavailability
tpu_manager.request_alternate_pod().await?;
}
Err(TpuError::CommunicationTimeout) => {
// Handle communication timeouts
optimizer.reduce_batch_size().await?;
}
Err(TpuError::OutOfMemory) => {
// Handle TPU memory exhaustion
optimizer.enable_gradient_checkpointing().await?;
}
Err(e) => return Err(e.into()),
}
use optirs_tpu::preemptible::{PreemptibleManager, PreemptionHandler};
let preemptible_config = PodConfig::new()
.with_tpu_type("v3-8")
.with_preemptible(true) // 70% cost savings
.build();
let preemption_handler = PreemptionHandler::new()
.with_checkpoint_frequency(Duration::from_secs(300))
.with_auto_restart(true)
.build();
let tpu_pod = tpu_manager
.allocate_preemptible_pod(&preemptible_config, preemption_handler)
.await?;
use optirs_tpu::spot::{SpotManager, BiddingStrategy};
let spot_manager = SpotManager::new()
.with_bidding_strategy(BiddingStrategy::CostOptimized)
.with_max_price_per_hour(2.50)
.build();
let spot_pod = spot_manager.bid_for_pod(&pod_config).await?;
| Feature | Google Cloud TPU | TPU Research Cloud | On-Premise |
|---|---|---|---|
| v2 TPUs | ✅ | ✅ | ❌ |
| v3 TPUs | ✅ | ✅ | ❌ |
| v4 TPUs | ✅ | ✅ | ❌ |
| Pod Management | ✅ | Limited | ❌ |
| Preemptible | ✅ | ❌ | ❌ |
To maintain consistency and readability across the codebase, please follow these guidelines:
snake_case for variable names (e.g., user_id, max_iterations, learning_rate)userId ❌, maxIterations ❌)// ✅ Correct: snake_case
let experiment_id = "exp_001";
let max_epochs = 100;
let learning_rate = 0.001;
// ❌ Incorrect: camelCase or other formats
let experimentId = "exp_001";
let maxEpochs = 100;
let learningrate = 0.001;
snake_case for function and method namesPascalCase for struct, enum, and trait namesSCREAMING_SNAKE_CASE for constantsrustfmt and clippy to maintain code formatting and catch common issuescargo fmt to format your codecargo clippy to check for lint issuescargo testcargo checkOptiRS follows the Cool Japan organization's development standards. See the main OptiRS repository for contribution guidelines.
This project is licensed under either of:
at your option.