Crates.io | oxygraph |
lib.rs | oxygraph |
version | 0.1.6 |
source | src |
created_at | 2022-09-11 19:08:21.350337 |
updated_at | 2022-10-15 10:33:16.766026 |
description | Algorithms and structures on ecological graphs. |
homepage | https://github.com/Euphrasiologist/oxygraphis/tree/main/oxygraph |
repository | https://github.com/Euphrasiologist/oxygraphis/tree/main/oxygraph |
max_upload_size | |
id | 663184 |
size | 85,647 |
oxygraph
oxygraph
is a Rust library to analyse bipartite graphs, and implements several algorithms along with visualisations.
There is functionality to:
The bipartite graphs are a thin wrapper over petgraph
graphs, and the interaction matrices are two dimensional ndarray
s.
As the wrappers are thin, implementation of new metrics/algorithms should be straightforward.
An example which illustrates initiation of the graph from a TSV:
// main bipartite graph struct
use oxygraph::BipartiteGraph;
// Enum for which strata there are in a bipartite graph
use oxygraph::bipartite::Strata;
// Interaction matrix struct
use oxygraph::InteractionMatrix;
// LPAWB+ algorithm
use oxygraph::modularity::lpa_wb_plus;
// read in some data
// in the format:
// from to weight
// 0 1 1.0
// etc ...
let bpgraph = BipartiteGraph::from_dsv("path/to/tsv", b'\t').unwrap();
// is the graph bipartite?
let strata = bpgraph.is_bipartite();
match stata {
Strata::Yes(map) => println!("{:?}", map),
// tell the user which nodes are the offenders.
Strata::No => {
panic!("Uh oh, your graph isn't bipartite!");
}
}
// basic stats
println!("{:?}", bpgraph.stats());
// calculate NODF
let mut im = InteractionMatrix::from_bipartite(bpgraph);
println!("{}", im.nodf().unwrap());
// make a random bipartite graph
let rand_graph = BipartiteGraph::random(80, 100, 250).unwrap();
let mut im_rand = InteractionMatrix::from_bipartite(rand_graph);
// and calculate modularity
let modularity = lpa_wb_plus(rand_graph, None);
println!("{:?}", modularity);