Crates.io | pack |
lib.rs | pack |
version | 0.4.0 |
source | src |
created_at | 2018-02-04 16:31:16.705815 |
updated_at | 2018-02-12 15:39:06.571714 |
description | Solver for packing puzzle. |
homepage | https://github.com/fifth-postulate/packing-puzzle/wiki |
repository | https://github.com/fifth-postulate/packing-puzzle |
max_upload_size | |
id | 49613 |
size | 51,691 |
Solver for packing problems.
You can use this library by adding a dependency to your Cargo.toml
[dependencies]
pack = "*"
If you want to fix a specific version, feel free to enter a version number.
The Slohouber-Graatsma puzzle asks for
packing six 1 × 2 × 2 blocks and three 1 × 1 × 1 blocks into a 3 × 3 × 3 box.
We are going to solve it with the pack
library.
First we announce the use of the external crate.
extern crate pack;
We need to a few things before we can start solving the puzzle. One is a
pack::puzzle::solver::Target
. A target designates the volume to pack. A target
is created with a vector of pack::puzzle::piece::Position
s.
fn brick3x3x3() -> Target {
Target::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(2, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
Position::new(2, 1, 0),
Position::new(0, 2, 0),
Position::new(1, 2, 0),
Position::new(2, 2, 0),
Position::new(0, 0, 1),
Position::new(1, 0, 1),
Position::new(2, 0, 1),
Position::new(0, 1, 1),
Position::new(1, 1, 1),
Position::new(2, 1, 1),
Position::new(0, 2, 1),
Position::new(1, 2, 1),
Position::new(2, 2, 1),
Position::new(0, 0, 2),
Position::new(1, 0, 2),
Position::new(2, 0, 2),
Position::new(0, 1, 2),
Position::new(1, 1, 2),
Position::new(2, 1, 2),
Position::new(0, 2, 2),
Position::new(1, 2, 2),
Position::new(2, 2, 2),
))
}
Because bricks are often used as targets, there is a utility
pack::util::target::brick
function that does exactly that. The above code
could be replaced with brick(3, 3, 3)
.
One other thing we need is a pack::puzzle::pieces::Bag
of
pack::puzzle::piece:Template
s. A template is a shape that can be oriented in
different ways by iterating over them. A bag is a container to hold templates.
Templates are created by providing the vector of positions they occupy.
fn slothouber_graatsma_bag() -> Bag {
Bag::new(vec!(
Template::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
Position::new(1, 0, 0),
Position::new(0, 1, 0),
Position::new(1, 1, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
)),
Template::new(vec!(
Position::new(0, 0, 0),
)),
))
}
Finally we need to tell the solve
function what to do when they find a
solution. This can be done by passing a clojure. For this example we will just
print the solution.
Our main
function could look like the following code.
fn main(){
let target = brick(3, 3, 3);
let bag = slothouber_graatsma_bag();
solve(&target, bag, &mut |solution|{
println!("{}", solution)
});
}
Running it will print a solution to the Slothouber-Graatsma puzzle. The full source for this example can be found in examples/slothouber-graatsma.rs. For a more extensive documentation see the wiki.
If you are interested in contributing to this library please read CONTRIBUTING.md.
Follow the installation instruction for clippy and run the following command.
cargo +nightly clippy