| Crates.io | pick_fast |
| lib.rs | pick_fast |
| version | 0.1.22 |
| created_at | 2025-12-18 04:17:36.185009+00 |
| updated_at | 2025-12-19 06:34:05.516501+00 |
| description | High-performance weighted random load balancer for selecting low-latency nodes with smooth weight updates. / 高性能加权随机负载均衡器,用于选择低延迟节点,支持权重平滑更新。 |
| homepage | https://github.com/js0-site/rust/tree/main/pick_fast |
| repository | https://github.com/js0-site/rust.git |
| max_upload_size | |
| id | 1991690 |
| size | 143,911 |
High-performance weighted random selection library with atomic EMA weight updates. Designed for load balancing, A/B testing, resource scheduling, and scenarios requiring probability-based selection with dynamic weight adjustment.
AtomicU32 and Compare-And-Swap (CAS) for thread-safe weight updates without locksbase from node count, no node limitfailed() method to quickly penalize underperforming nodesRank traitUsing hickory-resolver to perform actual DNS queries through specified DNS servers, combined with race crate for staggered resolution with automatic failover.
use std::{sync::Arc, time::Duration};
use futures::StreamExt;
use hickory_resolver::{
Resolver,
config::{NameServerConfig, ResolverConfig},
proto::xfer::Protocol,
};
use pick_fast::PickFast;
use race::Race;
use std::net::{IpAddr, Ipv4Addr};
#[derive(Debug, Clone, Copy)]
struct DnsServer { ip: IpAddr }
const fn ip(a: u8, b: u8, c: u8, d: u8) -> DnsServer {
DnsServer { ip: IpAddr::V4(Ipv4Addr::new(a, b, c, d)) }
}
const DNS_SERVER_LI: [DnsServer; 8] = [
ip(8, 8, 8, 8), // Google
ip(1, 1, 1, 1), // Cloudflare
ip(223, 5, 5, 5), // AliDNS
ip(208, 67, 222, 222), // OpenDNS
ip(9, 9, 9, 9), // Quad9
ip(1, 0, 0, 1), // Cloudflare
ip(114, 114, 114, 114), // 114DNS
ip(180, 76, 76, 76), // Baidu
];
/// Task struct for tracking DNS resolution
struct Task {
pub index: usize,
pub start: u64,
}
// Create resolver with specific DNS server
fn create_resolver(server: &DnsServer) -> Resolver<hickory_resolver::name_server::TokioConnectionProvider> {
let ns = NameServerConfig::new(
std::net::SocketAddr::new(server.ip, 53),
Protocol::Udp,
);
let mut config = ResolverConfig::new();
config.add_name_server(ns);
let provider = hickory_resolver::name_server::TokioConnectionProvider::default();
Resolver::builder_with_config(config, provider).build()
}
#[tokio::main]
async fn main() {
let lb = Arc::new(PickFast::<DnsServer>::new(DNS_SERVER_LI));
const HOST: &str = "example.com";
// Create Race with Task struct for latency tracking
let mut race = Race::new(
Duration::from_millis(500),
|task: &Task| {
let index = task.index;
let start = task.start;
let lb = lb.clone();
let resolver = create_resolver(&lb.li[index].data);
let server_ip = lb.li[index].data.ip;
async move {
match resolver.lookup_ip(HOST).await {
Ok(response) => {
if let Some(addr) = response.iter().next() {
let latency = (ts_::milli() - start) as u32;
// Successful: update latency weight
lb.set(index, latency);
println!("✅ {HOST} via {server_ip} -> {addr} ({latency}ms)");
Ok(addr)
} else {
lb.failed(index);
Err(std::io::Error::new(std::io::ErrorKind::NotFound, "No address"))
}
}
Err(e) => {
// Network error: reduce weight
lb.failed(index);
Err(std::io::Error::new(std::io::ErrorKind::Other, e.to_string()))
}
}
}
},
lb.iter().map(|i| Task {
index: i.0,
start: ts_::milli(),
}),
);
// Wait for first successful result
while let Some((_task, result)) = race.next().await {
match result {
Ok(addr) => {
println!("🎯 Resolved: {addr}");
// Mark remaining tasks as failed to reduce their weight
for (t, _) in race.ing {
lb.failed(t.index);
}
break;
}
Err(_) => {
// Already called lb.failed(index) in the async closure
}
}
}
}
The Rank trait defines how observed values (e.g., latency) convert to selection weights.
use pick_fast::Rank;
/// Priority-based ranking: higher priority = higher weight
pub struct Priority;
impl Rank for Priority {
fn calc(base: u32, priority: u32) -> u32 {
priority // Direct mapping: priority value becomes weight
}
}
// Usage
let lb = PickFast::<Task, Priority>::new(tasks);
lb.set(index, 100); // Set priority to 100
Built-in Inverse strategy suits latency-based selection:
Weight = base / Latency
base = u32::MAX / NodeCount / 32
Initial Weight = base / NodeCount
Design choice: base is auto-calculated from node count. Division by 32 reserves headroom for EMA formula old * 31 to prevent overflow, supporting any number of nodes.
Architecture focuses on minimizing synchronization overhead and maximizing throughput.
graph TD
A[Client Request] --> B["pick()"]
B --> C[Atomic Load Total Weight]
C --> D[Random Target Selection]
D --> E["Linear Scan Nodes O(N)"]
E --> F[Return Handle]
G[Performance Feedback] --> H["set()"]
H --> I[Calculate Target Weight via Rank]
I --> J[CAS Update Node Weight with EMA]
J --> K[Atomic Update Total Weight]
New Weight = (Old Weight * 31 + Target Weight) / 32
32-sample half-life smoothing makes weight changes more gradual, preventing drastic fluctuations from transient spikes.
| Type | Description |
|---|---|
PickFast<T, M> |
Main load balancer struct. T: node data, M: rank model (default: Inverse) |
PickFast.li |
Vec<Node<T>> - Node list |
PickFast.total |
AtomicU32 - Cached total weight |
PickFast.base |
u32 - Base value, auto-calculated from node count |
Node<T> |
Node struct containing data and weight |
Node.data |
T - Node data |
Node.weight |
AtomicU32 - Node weight |
| Method | Description |
|---|---|
new(data: impl IntoIterator<Item = T>) -> Self |
Create instance from iterator |
len(&self) -> usize |
Get node count |
is_empty(&self) -> bool |
Check if empty |
pick(&self) -> Handle<'_, T> |
Select node based on current weights. O(1) weight load + O(N) scan |
set(&self, index: usize, val: u32) |
Update node observation with EMA smoothing (minimum weight: 1) |
failed(&self, index: usize) |
Mark node as failed, halving its weight (minimum weight: 1) |
iter(&self) -> CIter<'_, Node<T>> |
Create circular iterator with weighted random start position (requires iter feature) |
| Type | Description |
|---|---|
Handle<'a, T> |
Smart pointer to selected node, contains index and node reference |
Rank |
Trait for custom weight calculation logic, calc(base, val) -> weight |
Inverse |
Default strategy: weight = base / latency |
| Category | Technology |
|---|---|
| Language | Rust (Edition 2024) |
| Randomness | fastrand |
| Concurrency | std::sync::atomic |
| Testing/Visualization | plotters, svg |
.
├── Cargo.toml # Project configuration
├── src/
│ └── lib.rs # Core implementation
├── tests/
│ ├── main.rs # Integration tests and chart generation
│ ├── dns.rs # Real DNS resolution test
│ └── dns_server.rs # DNS server definitions
└── readme/
├── en.md # English documentation
├── zh.md # Chinese documentation
├── rank-en.svg # English performance chart
└── rank-zh.svg # Chinese performance chart
Weighted load balancing has roots in network packet scheduling. The "Weighted Round Robin" (WRR) concept was formalized in 1991 for ATM (Asynchronous Transfer Mode) networks, where heterogeneous link speeds required differential treatment.
The evolution from WRR to modern weighted random selection represents a paradigm shift: instead of deterministic slot allocation, probabilistic approaches like pick_fast offer natural load distribution. Combined with EMA smoothing—a technique borrowed from stock market technical analysis dating back to the 1960s—the algorithm adapts gracefully to varying network conditions.
Interestingly, the Compare-And-Swap primitive used here traces back to IBM System/370 in 1970, making lock-free programming concepts over 50 years old—yet they remain the cornerstone of modern high-performance concurrent systems.
This project is an open-source component of js0.site ⋅ Refactoring the Internet Plan.
We are redefining the development paradigm of the Internet in a componentized way. Welcome to follow us:
高性能加权随机选择库,支持权重平滑更新。专为负载均衡、A/B 测试、资源调度,以及需要基于概率选择与动态权重调整的场景设计。
AtomicU32 和 CAS 实现线程安全的权重更新,无需互斥锁base,无节点数量限制failed() 方法快速惩罚性能不佳的节点Rank 特性支持自定义权重计算逻辑使用 hickory-resolver 通过指定 DNS 服务器进行真实 DNS 查询,结合 race crate 实现阶梯式解析与自动故障转移。
use std::{sync::Arc, time::Duration};
use futures::StreamExt;
use hickory_resolver::{
Resolver,
config::{NameServerConfig, ResolverConfig},
proto::xfer::Protocol,
};
use pick_fast::PickFast;
use race::Race;
use std::net::{IpAddr, Ipv4Addr};
#[derive(Debug, Clone, Copy)]
struct DnsServer { ip: IpAddr }
const fn ip(a: u8, b: u8, c: u8, d: u8) -> DnsServer {
DnsServer { ip: IpAddr::V4(Ipv4Addr::new(a, b, c, d)) }
}
const DNS_SERVER_LI: [DnsServer; 8] = [
ip(8, 8, 8, 8), // Google
ip(1, 1, 1, 1), // Cloudflare
ip(223, 5, 5, 5), // 阿里DNS
ip(208, 67, 222, 222), // OpenDNS
ip(9, 9, 9, 9), // Quad9
ip(1, 0, 0, 1), // Cloudflare
ip(114, 114, 114, 114), // 114DNS
ip(180, 76, 76, 76), // 百度DNS
];
/// 用于跟踪 DNS 解析的任务结构体
struct Task {
pub index: usize,
pub start: u64,
}
// 使用指定 DNS 服务器创建解析器
fn create_resolver(server: &DnsServer) -> Resolver<hickory_resolver::name_server::TokioConnectionProvider> {
let ns = NameServerConfig::new(
std::net::SocketAddr::new(server.ip, 53),
Protocol::Udp,
);
let mut config = ResolverConfig::new();
config.add_name_server(ns);
let provider = hickory_resolver::name_server::TokioConnectionProvider::default();
Resolver::builder_with_config(config, provider).build()
}
#[tokio::main]
async fn main() {
let lb = Arc::new(PickFast::<DnsServer>::new(DNS_SERVER_LI));
const HOST: &str = "example.com";
// 使用 Task 结构体创建 Race,用于延时跟踪
let mut race = Race::new(
Duration::from_millis(500),
|task: &Task| {
let index = task.index;
let start = task.start;
let lb = lb.clone();
let resolver = create_resolver(&lb.li[index].data);
let server_ip = lb.li[index].data.ip;
async move {
match resolver.lookup_ip(HOST).await {
Ok(response) => {
if let Some(addr) = response.iter().next() {
let latency = (ts_::milli() - start) as u32;
// 成功:更新延时权重
lb.set(index, latency);
println!("✅ {HOST} 通过 {server_ip} -> {addr} ({latency}ms)");
Ok(addr)
} else {
lb.failed(index);
Err(std::io::Error::new(std::io::ErrorKind::NotFound, "无地址"))
}
}
Err(e) => {
// 网络错误:降低权重
lb.failed(index);
Err(std::io::Error::new(std::io::ErrorKind::Other, e.to_string()))
}
}
}
},
lb.iter().map(|i| Task {
index: i.0,
start: ts_::milli(),
}),
);
// 等待第一个成功结果
while let Some((_task, result)) = race.next().await {
match result {
Ok(addr) => {
println!("🎯 解析成功: {addr}");
// 将剩余任务标记为失败,降低其权重
for (t, _) in race.ing {
lb.failed(t.index);
}
break;
}
Err(_) => {
// 已在异步闭包中调用 lb.failed(index)
}
}
}
}
Rank 特性定义观测值(如延时)如何转换为选择权重。
use pick_fast::Rank;
/// 优先级排序:优先级越高,权重越大
pub struct Priority;
impl Rank for Priority {
fn calc(base: u32, priority: u32) -> u32 {
priority // 直接映射:优先级值即权重
}
}
// 使用示例
let lb = PickFast::<Task, Priority>::new(tasks);
lb.set(index, 100); // 设置优先级为 100
内置 Inverse 策略适用于基于延时的选择:
权重 = base / 延时
base = u32::MAX / 节点数 / 32
初始权重 = base / 节点数
设计考量:base 根据节点数自动计算,除以 32 是为平滑公式 old * 31 预留空间防止溢出,支持任意数量节点。
架构核心:最小化同步开销,最大化吞吐量。
graph TD
A[客户端请求] --> B["pick()"]
B --> C[加载总权重]
C --> D[随机选择目标]
D --> E["线性扫描节点 O(N)"]
E --> F[返回 Handle]
G[性能反馈] --> H["set()"]
H --> I[通过 Rank 计算目标权重]
I --> J[CAS 更新节点权重 含平滑]
J --> K[更新总权重]
新权重 = (旧权重 * 31 + 目标权重) / 32
32 次半衰期的平滑机制,使权重变化更平缓,防止瞬时尖峰导致权重剧烈波动。
| 类型 | 说明 |
|---|---|
PickFast<T, M> |
负载均衡器主体。T: 节点数据,M: 权重模型(默认 Inverse) |
PickFast.li |
Vec<Node<T>> - 节点列表 |
PickFast.total |
AtomicU32 - 缓存的总权重 |
PickFast.base |
u32 - 基准值,根据节点数自动计算 |
Node<T> |
节点结构,包含数据和权重 |
Node.data |
T - 节点数据 |
Node.weight |
AtomicU32 - 节点权重 |
| 方法 | 说明 |
|---|---|
new(data: impl IntoIterator<Item = T>) -> Self |
从迭代器创建实例 |
len(&self) -> usize |
获取节点数量 |
is_empty(&self) -> bool |
检查是否为空 |
pick(&self) -> Handle<'_, T> |
基于当前权重选择节点。O(1) 权重加载 + O(N) 扫描 |
set(&self, index: usize, val: u32) |
更新节点观测值,平滑更新权重(最小权重:1) |
failed(&self, index: usize) |
标记节点失败,权重减半(最小权重:1) |
iter(&self) -> CIter<'_, Node<T>> |
创建循环迭代器,加权随机起始位置(需要 iter 特性) |
| 类型 | 说明 |
|---|---|
Handle<'a, T> |
选中节点的智能指针,包含 index 和 node 引用 |
Rank |
自定义权重计算逻辑的特性,calc(base, val) -> weight |
Inverse |
默认策略:weight = base / latency |
| 分类 | 技术 |
|---|---|
| 编程语言 | Rust (Edition 2024) |
| 随机算法 | fastrand |
| 并发控制 | std::sync::atomic |
| 测试与可视化 | plotters, svg |
.
├── Cargo.toml # 项目配置
├── src/
│ └── lib.rs # 核心实现
├── tests/
│ ├── main.rs # 集成测试与图表生成
│ ├── dns.rs # 真实 DNS 解析测试
│ └── dns_server.rs # DNS 服务器定义
└── readme/
├── en.md # 英文文档
├── zh.md # 中文文档
├── rank-en.svg # 英文性能图表
└── rank-zh.svg # 中文性能图表
加权负载均衡起源于网络数据包调度。1991 年,"加权轮询" (Weighted Round Robin, WRR) 概念在 ATM (异步传输模式) 网络中被正式提出,用于处理异构链路速度的差异化调度需求。
从 WRR 到现代加权随机选择,代表着范式转变:从确定性槽位分配,转向概率方法实现自然的负载分布。结合指数平滑——该技术源自 1960 年代的股票市场技术分析——算法能优雅地适应网络条件变化。
有趣的是,这里使用的 CAS (Compare-And-Swap) 原语可追溯至 1970 年的 IBM System/370,使得无锁编程概念已有 50 余年历史——但它仍是现代高性能并发系统的基石。
本项目为 js0.site ⋅ 重构互联网计划 的开源组件。
我们正在以组件化的方式重新定义互联网的开发范式,欢迎关注: