polynomial-over-finite-prime-field

Crates.iopolynomial-over-finite-prime-field
lib.rspolynomial-over-finite-prime-field
version
sourcesrc
created_at2021-05-01 16:22:20.670219
updated_at2024-10-27 04:48:37.574289
descriptionpolynomial over finite prime field
homepage
repositoryhttps://gitlab.com/Toru3/polynomial-over-finite-prime-field/
max_upload_size
id391942
Cargo.toml error:TOML parse error at line 19, column 1 | 19 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include`
size0
(Toru3)

documentation

https://docs.rs/polynomial-over-finite-prime-field/

README

Polynomial ring over finite prime field $\mathbb{F}_p[x]$

use polynomial_over_finite_prime_field::PolynomialOverP;
let p = PolynomialOverP::<i32>::new(vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3], 17);
let q = PolynomialOverP::<i32>::new(vec![2, 7, 1, 8, 2, 8], 17);
let mut r = p.clone();
let d = r.division(&q);
assert!((d * q + r - p).is_zero());

Licence

AGPL-3.0-or-later

Commit count: 33

cargo fmt